Orbit corrector budget for HL-LHC v1.5

Joel Andersson, Davide Gamba, Riccardo de Maria, CERN

169th HiLumi WP2 Meeting - 3rd March 2020

General assumptions

- HL-LHC Optics V1.5
- $7 \mathrm{TeV} ; \beta^{*}=15 \mathrm{~cm}$ round; $\epsilon_{\mathrm{N}}=2.5 \mu \mathrm{~m} ; \delta_{p}=1.1 \mathrm{e}-4$
- Here shown only at right side of IP5
- V crossing and H separation
- for H crossing (IP1) and left side symmetries apply
- Residual orbit and corrector strength given in 2*r.m.s.
- Standard approach considered to fit LHC experience (Chamonix08)
- Note: results obtained with Python framework by Joel:
- Assuming fully linear optics
- Most computations using SVD inversion of response matrices generated from Twiss functions
- Orbit correction at BPMs only
- Framework source code and examples: POCKPy on GitLab
- Also documented in Joel's master thesis: A Linear Framework for Orbit Correction in the High-Luminosity Large Hadron Collider - link

Orbit Correction and Corrector Budget

Orbit correction due to errors

- Considered element errors (all square distributions):
- Quadrupoles:
- Transverse offset: $\pm \mathbf{0 . 5} \mathbf{~ m m}$
- Rotation (DPSI): $\pm \mathbf{1}$ mrad
- Relative field strength error: $\pm \mathbf{0 . 2 \%}$
- Dipoles:
- (NEW) Transverse offset: $\pm \mathbf{0 . 5} \mathbf{~ m m}$
- Used only to give orbit w.r.t. center of magnet and nearby BPM
- Rotation (DPSI): $\pm \mathbf{0 . 5} \mathbf{~ m r a d}$
- Relative field strength error: $\pm \mathbf{0 . 2 \%}$
- BPMs:
- (NEW) Transverse offset: $\pm \mathbf{0 . 5} \mathbf{~ m m}$
- Several cases considered, finally assumed to move with nearby quadrupole
- Missing errors w.r.t. previous studies:
- Longitudinal misalignment
- Not easy to implement in present (analytical) framework
- Deemed to be negligible in previous studies
- Important remark:
- Still using "standard" numbers for expected errors
- Update numbers may come from WG Alignment (espace)
- Natural entanglement between what is desirable and what is achievable!

Residual orbit post-correction (in the arc)

- Depending on assumption on BPM behavior, one gets different results.
- Note: correcting such to minimize orbit wrt center of all BPMs with the same weight

Attached BPM

Orbit wrt ideal reference

Orbit wrt magnet axis

Assumption used in the following slides

Orbit correction strategy in the triplet

- Need to assume a strategy to "define"/ "find" ideal IP position

Orbit wrt ideal reference

Orbit wrt magnet axis

Imagining that ballistic optics could give us a good "ideal" reference at Q1 BPM

Resume: Residual Orbit and Correctors Usage

- BPMs move with nearby magnet + "strong" correction to get beam at ideal IP

Knobs implementation

- $295 \mu \mathrm{rad}$ crossing angle in V plane
- (Made of 80% "short" $+20 \%$ "long" official versions - ($\sim 0.66 \mathrm{~mm}$ at CC))
- $\pm 0.75 \mathrm{~mm}$ separation in H plane
- $\mathbf{1 0 0} \boldsymbol{\mu m}$ IP movement independent for B1/B2 for lumiscan
- $2 \mathbf{~ m m}$ IP offset with correctors + remote alignment
- Q1-Q4 displaced by 2 mm ; Q5 displaced by 1 mm
- $\pm 500 \boldsymbol{\mu m}$ IP offset with orbit corrector only (requires ~1 mm CC re-alignment)
- $\pm 500 \mu \mathrm{~m}$ movement independent for B1/B2 for CC alignment

Failure Scenarios

Aperture considerations

- Previously, e.g. $162^{\text {th }}$ WP2, required aperture limits were 20/13.2б in the arc/triplet.
- Here, using 19.4 $\boldsymbol{\sigma}$ in the arc and modulated (~12 σ) limit in triplet according to CERN-ACC-2017-0051
- Could probably apply also to the arc, but to be crosschecked.

Available "aperture" for orbit

- Scanning over $\mathbf{x}_{\text {co }}$ (default 2 mm) one can get the radial orbit clearance, wrt to target aperture.
- Conservative approach, but not too far from reality.

Failure Scenarios and Orbit Correction

- Each color represent one orbit corrector failing
- but still correcting for misalignments with all other correctors
- In this respect, only MCBXFA. 3 seems to be fundamental!

Failure Scenarios and Knobs Implementation

- Technically, for a generic knob implementation, we cannot fail: MCBXFA.3; any MCBRDs; the non-redundant MCBYs
- Strongly used for crossing knob implementation.
- However, also in other cases one should carefully verify all knob implementations on a case-by-case basis.
- In practice: main interest is to verify failure of MCBC Q9 (e.g. 162th WP2)
- Corrector not used for any knob implementation

CERN)

Orbit Feedback considerations

Orbit Correction during Stable Beam

- Assuming typical use of orbit feedback as today (LHC - 40/~500 singular values per plane), also including triplet orbit correctors (HL-LHC only).
- From study of Joel presented at 164th (and 156th) WP2 Meetings

IP5; assumed RMS BPM error $=5 \mu m$

CERN

Required speed for MCBX orbit correctors

- $0.12 \mathrm{mTm}=5 \mathrm{e}-5$ corrector usage wrt nominal strength
- Corresponds to about 80 mA rms orbit corrector usage
- Assuming 1 Hz oscillation, max derivative about 0.7 A/s
- Required performance of PC:

Table 15: Comparison of the relevant orbit correctors and separation dipoles [1].

	MCBXFA	MCBXFB	MCBRD	MCBY	MBXF	MBRD
Nom. Int. field [Tm]	4.50	2.50	5.00	2.79	35.00	35.00
Nom. Current [A]	1600	1600	430	88	12000	12000
Ramp rate [A / s]	15.00	15.00	2.00	0.67	12.00^{a}	12.00^{a}
Field Rate [mTm/s]	42.19	23.44	23.26	21.15	35.00	35.00
Angle Rate [$\mu \mathrm{rad} / \mathrm{s}$ @ 7TeV]	1.81	1.00	1.00	0.91	1.50	1.50
Ramp Acc. [A/s ${ }^{2}$]	5.00	5.00	1.00	0.25	2.00	2.00
Field Acc. [mTm/s ${ }^{2}$]	14.06	7.81	11.63	7.93	5.83	5.83
Angle Acc. [$\mu \mathrm{rad} / \mathbf{s}^{2}$ @7TeV]	0.60	0.33	0.50	0.34	0.25	0.25
Time to nom. rate [s]	3.00	3.00	2.00	2.67	6.00	6.00
${ }^{a}$ In [1] it was specified $20 \mathrm{~A} / \mathrm{s}$ as a first estimation.			Table from CERN-ACC-2017-0101			

- Concerns that Quench Protection System (QPS) of LHC MCBX does not allow for high dl/dt (false-positive quench detection)
- Not an issue for HL-LHC MCBXF as they will have middle voltage tap (EDMS 2002347, R. Denz - HL-LHC Coll. Meeting 2018 indico)

Conclusions

- A generic tool to quickly check correctors budget and residual orbit has been implemented (by Joel - Thanks!)
- HL-LHCv1.5 $\beta^{*}=15 \mathrm{~cm}$ round optics verified:
- Can safely implement all standard knobs
- Residual orbit (wrt magnet axis) <1 mm (2*rms)
- It can sustain loss of Q9 MCBX in case of radiation damage
- IP orbit stabilisation during stable beam is expected to require $<0.1 \mathbf{m T m}$ (assuming 0.1 um quadrupole-displacement-equivalent errors, 5 um BPMs error) keeping the luminosity loss below 0.25%
- Compatible with required orbit corrector speed.
- Not covered here: flat optics has been also analyzed
- No major differences, but tighter aperture
- All results are being summarized in a detailed note.

Thank you for your attention!
Joel Andersson, Davide Gamba, Riccardo De Maria

Backup

Joel Andersson, Davide Gamba, Riccardo De Maria

Flat Optics

Flat Optics: Residual Orbit and Correctors Usage

- No difference! - strengths of elements in this region is basically unchanged!

Flat Optics: Knobs implementation

- $295 \mu \mathrm{rad}$ crossing angle in H plane
- $\pm 0.75 \mathrm{~mm}$ separation in V plane
- $\mathbf{1 0 0} \boldsymbol{\mu \mathrm { m }}$ IP movement independent for B1/B2 for lumiscan
- $2 \mathbf{~ m m ~ I P ~ o f f s e t ~ w i t h ~ c o r r e c t o r s ~ + ~ r e m o t e ~ a l i g n m e n t ~}$
- Q1-Q4 displaced by 2 mm ; Q5 displaced by 1 mm
- $\pm 500 \mu \mathrm{~m}$ IP offset with orbit corrector only (requires CC re-alignment!)
- $\pm 500 \mu \mathrm{~m}$ movement independent for $\mathrm{B} 1 / \mathrm{B} 2$ for CC alignment

CERN

Flat optics: Available "aperture" for orbit

- Slightly less aperture, touching in a few points.
- Still well compatible with expected residual orbit (<1 mm 2*r.m.s.)

Orbit Corrector Budget

Corrector budget - complete up to Q9

Corrector strength expenditure for correction

- Comparison between orbit corrector budget use for different correction strategies in the triplet:
- "Hard Q1 correction" = overcorrection at Q1 BPM
" "Correct to ideal orbit" = orbit correction at ideal orbit at Q1 BPM
- "No hard Q1 correction" = simple orbit correction like in the arc.

Apertures and Failures

Aperture considerations: how to compute?

- Present baseline for aperture computation (CERN-ACC-2017-0051)

Orbit tolerances, including:

- Closed orbit deviation ($\mathrm{x}_{\mathrm{co}}=2 \mathrm{~mm}$);
- Mechanical alignment tolerance ($\boldsymbol{\Delta}_{\mathrm{a}}$);
- Beam screen alignment ($\Delta_{\text {ba }}$);
- Cold bore alignment ($\boldsymbol{\Delta}_{\mathrm{cb}}$);
- Off-momentum component (D δ_{p}; taking into account dispersion beating)

Aperture considerations: how to compute?

- Present baseline for aperture computation (CERN-ACC-2017-0051) assumes:

Parameter	Injection Note (Example)	Top energy Note (Example)	Description
Halo(s)	60	60	Primary and secondary halo extensions
ε_{n}	2.5 (2.5) $\mu \mathrm{m}$	2.5 (2.5) $\mu \mathrm{m}$	Normalized emittance.
dPMax	8.6e-4 (8.6e-4)	$2 \mathrm{e}-4$ (2e-4)	"Bucket edge at the current beam energy." -> to be set to 0 for TWISS_DELTAP != 0
$\mathrm{x}_{\text {co }}$	2 (2) mm	2 (2) mm	Max closed orbit deviation - radial
k_{β}	1.05 (1.05)	1.1 (1.1)	β beating
$\mathrm{f}_{\text {arc }}$	0.14 (0.14)	0.1 (0.1)	Relative parasitic dispersion (scaling from arc to local dispersion) (DPARX/DPARY in MAD-X)
δ_{p}	$8.6 \mathrm{e}-4$ (6e-4?)	$2 \mathrm{e}-4(2 \mathrm{e}-4 ?)$	Momentum offset used to compute off-momentum β beating by executing 3 separate Twiss $-\delta_{p} ; 0 ;+\delta_{p}$
σ_{p}	(4.5e-4)	$\begin{gathered} (4.5 \mathrm{e}- \\ 4 * \operatorname{sqrt}(450 / 7000)) \end{gathered}$	Beam energy spread, used in beam definition -> not being used by aperture calculation
Interval	$\begin{gathered} \text { n.a. } \\ (1.0) \end{gathered}$	$\begin{gathered} \text { n.a. } \\ (1.0) \end{gathered}$	Approximate length in meters between measurements.
SPECIF	(12.6)	(14.6)	Aperture spec, for plotting only.
VMAXI	(30)	(30)	??

Aperture B1 comparison (round optics)

- Using CERN-ACC-2017-0051 as aperture limit also in the arc

(ÉERN)

Full case for failures of Q9 orbit correctors

Nominal/failure case around Q9 Left H/V

Nominal/failure case around Q9 Right H/V

Knobs

Crossing knob

Crossing knob (in beam sigmas)

Knob orbits

LUMISCAN_B1

LUMISCAN_B2

Knob orbits

IP_CROSSING

IP_SEPARATION

Knob orbits

CC_MOVE_B2

Knob orbits

IP_OFFSET_REMOTE

IP_OFFSET_CORR

HL-LHC PRO.

Residual orbit B1X

- BPMs move with nearby magnet + "strong" correction to get beam at ideal IP

Residual orbit B1Y

- BPMs move with nearby magnet + "strong" correction to get beam at ideal IP

Residual orbit B2X

- BPMs move with nearby magnet + "strong" correction to get beam at ideal IP

Residual orbit B2Y

- BPMs move with nearby magnet + "strong" correction to get beam at ideal IP

Failure scenario: B1X

MCBH.17R5.B1

- МСВН.15R5.B1
- MCBH.13R5.B1
- MCBH.11R5.B1
- МСВСН.9R5.B1
- МСВСН.7R5.B1
- МСВСн.5R5.B1
- МСВҮн.B4R5.B1
- MCBYH.A4R5.B1
- MCBRDH.4R5.B1
- MCBXFAH.3R5
- MCBXFBH.B2R5
- MCBXFBH.A2R5
- Мсвхғвн.A2L5
- MCBXFBH.B2L5
- MCBXFAH.3L5
- MCBRDH.4L5.B1
- MCBYH.4L5.B1
- МСВСн.6L5.B1
- MCBCH.8L5.B1
- MCBH.10L5.B1
- МСВН.12L5.B1
- МСВН.14L5.B1
- МСВН.16L5.B1

MCBH.18L5.B1

Failure scenario: B1X (zoomed)

Failure scenario: B1Y

Failure scenario: B1Y

Failure scenario: B2X

MCBH.18R5.B2

- МСВН.16R5.B2
- MCBH.14R5.B2
- МСВН.12R5.B2
- мСВн.10R5.B2
- МСВСН.8R5.B2
- МСВСН.6R5.B2
- МСВҮн.4R5.B2
- MCBRDH.4R5.B2
- MCBXFAH.3R5
- МСвХғвн.B2R5
- MCBXFBH.A2R5
- mCBXFBH.A2L5
- МСВХғвн.B2L5
- MCBXFAH.3L5
- MCBRDH.4L5.B2
- МСВҮн.A4L5.B2
- MCBYH.B4L5.B2
- МСВСН.5L5.B2
- МСВСН.7L5.B2
- МСВСН.9L5.B2
- MCBH.11L5.B2
- мсвн.13L5.B2

MCBH.15L5.B2
MCBH.175.B2

Failure scenario: B2X

Failure scenario: B2Y

Failure scenario: B2Y (zoomed)

