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The first halos
The first dark matter halos form from smooth density peaks.

Primordial density field Collapsed structures

(smoothed by free streaming)

Normally not resolved in simulations [~earth mass]
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𝜌 ∝ 𝑟−3/2 cusp stabilizes 
immediately after formation

Prompt cusps
Black = end of movie

early
late
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Prompt cusp persistence

MSD & White (2022)

Buildup of material 
produces shallow Einasto

profile at larger radii

Central 𝜌 ∝ 𝑟−3/2

cusp persists!
(𝑎 is defined arbitrarily)

M. Sten Delos 4/18
Outcome: standard CDM density profile + prompt cusp



Prompt cusps: broader picture

Twelve high-resolution halos from three power spectra:
Prompt cusp forms at collapse; no evidence for disruption
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Prompt cusp persistence is natural
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Most new material has 
too much energy and 

angular momentum to 
sink to the center

Only major mergers
can deposit material
into the center, but

impact is minor

Consequence: every (sub)halo has a central prompt cusp!

M. Sten Delos 6/18



Cusp set at formation time
∴ only sensitive to neighborhood of density peak

i.e., 𝛿 ≡ 𝛿𝜌/ ҧ𝜌, ∇2𝛿, and tidal field at peak

Density peak

Collapsed halo

What sets prompt cusp properties?
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Density peak

What sets prompt cusp properties?

Peak has comoving size 𝑅
and collapse time 𝑎𝑐:
𝑅 ≡ 𝛿/∇2𝛿 1/2

𝐷 𝑎𝑐 = 𝛿𝑐(𝑒, 𝑝)/𝛿

𝛿
𝑅

Tidal field

Prompt cusp: 𝜌 = 𝐴𝑟−3/2

𝐴 ≃ 24 ҧ𝜌 𝑎𝑐 𝑎𝑐𝑅
3/2

𝑀𝑝 ≃ 7.3 𝑅3 ҧ𝜌0
𝑅𝑝 ≃ 0.11𝑎𝑐𝑅

𝐴 𝑅𝑝
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Cusp properties from peaks
Twelve high-resolution halos from three power spectra:

Predictions [black] work well!
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Statistics of peaks
Connection between cusps

and peaks is clear.
What is the distribution of peaks?

Mergers?
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Core radius 𝑟𝑐 and density 𝜌𝑐

Central cores
Any density cusp must give way to a finite-density core at small radii

due to phase-space conservation

𝑓max = phase-space density
of the early universe

∼ ҧ𝜌 𝑎 𝜎 𝑎 −3

𝜌 ∝ 𝑟−3/2 cusps cover a factor of 𝑅𝑝/𝑟𝑐 ∼ 500 in radius
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Annihilation in
prompt cusps

100 GeV WIMP

annihilation rate

DMmass
∝

∫ 𝜌𝑑𝑀

𝑀DM
≃ 150 ҧ𝜌(𝑧 = 32)

Prompt cusps greatly impact 
the DM annihilation rate

Earliest 10% 
contribute 69% 
of annihilation
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Adiabatic-tides (Stücker et al) prediction for 
prompt cusp survival in our Galactic halo:

Prompt cusp survival

Theoretical studies

• Stücker et al 2022

• Drakos et al 2022

• Benson & Du 2022

• Amorisco 2021

predict cusps are
always preserved
at sufficiently
small radii

Subhalo evolution studies have focused on 𝜌 ∝ 𝑟−1 cusps;
steeper cusps are not well studied. However:

Steeper cusps are more 
resistant to tidal effects:
• More tightly bound
• Lower particle

apocenters

Annihilation rate in a 

𝜌 ∝ 𝑟−3/2 cusp is only 
logarithmically sensitive 
to the outer radius
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The Galactic Center gamma-ray excess
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Excess of 𝛾 rays detected by Fermi
in the 1-10 GeV energy range

Morphology consistent with DM 
annihilation from a smooth Galactic halo
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Spatial distribution of annihilation signal changes. Consider GCE as illustration:



Prompt cusps and the Galactic Center excess

Prompt cusps alter the DM 
annihilation morphology (𝜌, not 𝜌2)

Galactic halo mass model: Cautun et al (2020)

Prompt cusps boost the 
background annihilation signal

If GCE is annihilating DM, diffuse 𝛾-ray background 
must also be mostly annihilating DM…GCE is no longer consistent with annihilating DM.

Uncertainty about disruption by stars, though…
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Prompt cusps and the Galactic Center excess

Inconsistent with claims that almost all of the diffuse 
background comes from known astrophysical sources:

Blanco & Hooper (2019)

(Blue = measured background)

If GCE is annihilating DM, diffuse 𝛾-ray background 
must also be mostly annihilating DM…
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Limits on DM annihilation from
the diffuse 𝛾-ray background

Signal from DM annihilation in unresolved prompt cusps ≃ signal from DM decay

so we can convert between them:

Γdecay

𝑀DM
→
Γannihilation

𝑀DM

Blanco & Hooper (2019)

thermal relic
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Summary

The first halos develop prompt 𝜌 ∝ 𝑟−3/2 cusps, which
• persist through halo growth
• are particularly resistant to subhalo evolution
• have straightforwardly predictable properties

Prompt cusps have a major impact on DM annihilation
• Boost factors range from hundreds to thousands
• Different morphology: rate ∝ 𝜌 instead of 𝜌2

• Challenge to annihilation interpretation of GCE
• Unprecedentedly strong limits on annihilating DM

Prompt cusp

CDM is still exciting!
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Rapid accretion
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Self-similar models predict
faster accretion → shallower profile

Physically, new material
• builds up density at large radii
• contributes little to smaller radii
Same idea holds in more realistic models

(Ludlow et al 2013, Dalal et al 2010)

Behavior borne out in the first halos

Shallow NFW/Einasto profiles follow from the accretion history

Rapid accretion builds up large radii without disrupting smaller radii:
No destruction of prompt cusps 
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Mergers

Mergers can disturb 
central cusps:

A massive subhalo sinks 
due to dynamical friction 
and can thus disrupt the 
structure at small radii.

However, the disruption is 
minimal.

MSD & White (2022)

Merging halos ‘A’ and ‘B’ deposited material deep inside this halo…

…which caused some disruption of the 𝜌 ∝ 𝑟−3/2 cusp.

Density profile Position within initial conditions

dotted = earlier 𝜌(𝑟)

𝑟
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Cusp properties from peaks
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Prediction for 𝐴 = 𝜌𝑟3/2 also validated 
using a much larger halo sample

∝ ҧ𝜌 𝑎𝑐 𝑎𝑐𝑅
3/2 ∝ ҧ𝜌 𝑎𝑐 𝑎𝑐𝑅

3/2
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Universality?
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Behavior is well known:
Ishiyama, Makino, Ebisuzaki 2010 [arXiv:1006.3392]

Anderhalden & Diemand 2013 [arXiv:1302.0003]

Ishiyama 2014 [arXiv:1404.1650]

Polisensky & Ricotti 2015 [arXiv:1504.02126]

Ogiya, Nagai, Ishiyama 2016 [arXiv:1604.02866]

Angulo, Hahn, Ludlow, Bonoli 2017 [arXiv:1604.03131]

Ogiya & Hahn 2018 [arXiv:1707.07693]

Delos, Erickcek, Bailey, Alvarez 2018a [arXiv:1712.05421]

Delos, Erickcek, Bailey, Alvarez 2018b [arXiv:1806.07389]

Delos, Bruff, Erickcek 2019 [arXiv:1905.05766]

Ishiyama & Ando 2020 [arXiv:1907.03642]

Halo mergers drive shallowing 
of inner density profile?

Consistent with:

Not above -3/2

𝜌 ∝ 𝑟−3/2 cusp


