Prompt cusps of the first halos

(or why collisionless cold dark matter is still exciting)

M. Sten Delos Max Planck Institute for Astrophysics

with Simon White

COSMO'22 August 2022

The first halos

The first dark matter halos form from smooth density peaks.

(smoothed by free streaming)

Normally not resolved in simulations [~earth mass]

Prompt cusps

$t/t_c = 1.19$

Prompt cusp persistence

Outcome: standard CDM density profile + prompt cusp

Prompt cusps: broader picture

Twelve high-resolution halos from three power spectra:

Prompt cusp forms at collapse; no evidence for disruption

Prompt cusp persistence is natural

Consequence: every (sub)halo has a central prompt cusp!

What sets prompt cusp properties?

What sets prompt cusp properties?

Cusp properties from peaks

Twelve high-resolution halos from three power spectra: **Predictions [black] work well!**

Statistics of peaks

Central cores

Any density cusp must give way to a finite-density core at small radii

due to phase-space conservation

M. Sten Delos

Prompt cusp survival

Subhalo evolution studies have focused on $\rho \propto r^{-1}$ cusps; steeper cusps are not well studied. However:

The Galactic Center gamma-ray excess

Spatial distribution of annihilation signal changes. Consider GCE as illustration:

Prompt cusps and the Galactic Center excess

Prompt cusps and the Galactic Center excess

If GCE is annihilating DM, diffuse γ -ray background must also be mostly annihilating DM...

Inconsistent with claims that almost all of the diffuse background comes from known astrophysical sources:

Limits on DM annihilation from the diffuse γ -ray background

Signal from DM annihilation in unresolved prompt cusps \simeq signal from DM decay

so we can convert between them:

Summary

The first halos develop prompt $ho \propto r^{-3/2}$ cusps, which

- persist through halo growth
- are particularly resistant to subhalo evolution
- have straightforwardly predictable properties

Prompt cusps have a major impact on DM annihilation

- Boost factors range from hundreds to thousands
- Different morphology: rate $\propto \rho$ instead of ρ^2
- Challenge to annihilation interpretation of GCE
- Unprecedentedly strong limits on annihilating DM

CDM is still exciting!

Rapid accretion

Shallow NFW/Einasto profiles follow from the accretion history

Rapid accretion builds up large radii without disrupting smaller radii: No destruction of prompt cusps

Mergers

Mergers can disturb central cusps:

A massive subhalo sinks due to dynamical friction and can thus disrupt the structure at small radii.

However, the disruption is minimal.

Cusp properties from peaks

narrow

bump

wide

 10^0

bum

Universality?

