Gravitational wave signatures of axionic domain walls

Ricardo Z. Ferreira (IFAE, Barcelona)

Based on:

Phys.Rev.Lett. 128 (2022) 14, 141101 & arXiv:2204.04228

with A.Notari, O.Pujolàs, F. Rompineve

Outline

- 1. Axionic string-wall networks and GWs
- 2. The heavy QCD axion case
- 3. Hints at pulsar timing arrays?
- 4. Conclusion

Axions and axion-like particles

- Pseudo-goldstone bosons of spontaneously broken global symmetries (e.g U(1))
- Shift-symmetric (theory invariant under $a \rightarrow a + c$)
- Mass generated by non-perturbative effects (e.g. QCD, confining sectors, gravity?)

- General framework.
 Expected in different contexts:
 QCD axion, string theory, BSM, etc.
- Restrictive.
 Shift symmetry only allows specific couplings

Outline

- 1. Axionic string-wall networks and GWs
- 2. The heavy QCD axion case
- 3. Hints at pulsar timing arrays?
- 4. Conclusion

Cosmological evolution

* Symmetry broken after inflation

Cosmological evolution

U(1), axion takes random values $[0,2\pi)$. Network* of **cosmic strings.**

Shift-symmetry softly broken $(U(1) \to \mathbb{Z}_{N_{DW}})$: (explicitly or via non-perturbative effects)

$$V_a \sim \Lambda^4 \cos{(N_{DW}a/f)}$$
DW number

Network of domain walls with tension

$$\sigma = 8 \, m_a \, f^2, \qquad \begin{cases} N_{DW} = 1 \text{ (unstable)} \\ N_{DW} > 1 \text{ (stable)} \end{cases}$$

Cosmological evolution

U(1), axion takes random values $[0,2\pi)$. Network* of **cosmic strings.**

Shift-symmetry softly broken $(U(1) \to \mathbb{Z}_{N_{DW}})$:

$$V_a \sim \Lambda^4 \cos\left(N_{DW} a/f\right)$$

Network of **domain walls** with tension

$$\sigma = 8 m_a f^2, \qquad \begin{cases} N_{DW} = \\ N_{DW} > \end{cases}$$

Domain wall problem:

 $ho_{DW} \sim \sigma H$ redshifts slowly

Ways out:

- 1- $\mathbb{Z}_{N_{DW}}$ is not exact 2- Tension is small ($\sigma^{1/3} \lesssim \text{MeV}$)

[Kibble 76']

[Zeldovich 75']

Cosmological evolution

U(1), axion takes random values $[0,2\pi)$. Network* of **cosmic strings.**

Shift-symmetry softly broken $(U(1) \to \mathbb{Z}_{N_{DW}})$:

$$V_a \sim \Lambda^4 \cos\left(N_{DW} a/f\right)$$

Network of **domain walls** with tension

$$\sigma = 8 \, m_a \, f^2, \qquad \begin{cases} N_{DW} = 1 \text{ (unstable)} \\ N_{DW} > 1 \text{ (stable)} \end{cases}$$

Domain wall problem:

 $ho_{DW} \sim \sigma H$ redshifts slowly

Ways out:

1- $\mathbb{Z}_{N_{DW}}$ is not exact 2- Tension is small ($\sigma^{1/3} \lesssim \text{MeV}$)

[Kibble 76']

[Zeldovich 75']

What if $\mathbb{Z}_{N_{DW}}$ is not exact...

• Misaligned contributions (e.g from gravity, confining sectors, etc.) to the axion potential break $\mathbb{Z}_{N_{DW}}$

[Sikivie 82', Gelmini+ 89', Vlikenkin 94']

$$V_{mis} \sim \Lambda_{mis}^4 \cos\left(N_{mis}\frac{a}{f} + \delta\right)$$

and cause the **annihilation** of the network when $\rho_{DW}(t_{ann}) \sim V_{mis}$.

What if $\mathbb{Z}_{N_{DW}}$ is not exact...

 $V_{mis} \sim \rho_{dw}$ (DWs annihilate)

• Misaligned contributions (e.g from gravity, confining sectors, etc.) to the axion potential break $\mathbb{Z}_{N_{\mathrm{DW}}}$

[Sikivie 82', Gelmini+ 89', Vlikenkin 94']

$$V_{mis} \sim \Lambda_{mis}^4 \cos\left(N_{mis}\frac{a}{f} + \delta\right)$$

and cause the **annihilation** of the network when $\rho_{DW}(t_{ann}) \sim V_{mis}$.

▶ However ... if network is **long lived**, $\alpha \equiv \rho_{dw}/\rho_{tot}$ can be large at t_{ann} and generate a large **stochastic GW signal**

$$\Omega_{\text{gw}} h^2 \sim 10^{-10} \tilde{\epsilon} \left(\frac{10.75}{g_*(T_{\star})} \right)^{\frac{1}{3}} \left(\frac{\alpha(t_{ann})}{0.01} \right)^2$$

[Hiramatsu+ 13', **RZF,** Notari, Pujolàs, Rompineve 21']

What if $\mathbb{Z}_{N_{DW}}$ is not exact...

• Misaligned contributions (e.g from gravity, confining sectors, etc.) to the axion potential break $\mathbb{Z}_{N_{DW}}$

[Sikivie 82', Gelmini+ 89', Vlikenkin 94']

$$V_{mis} \sim \Lambda_{mis}^4 \cos\left(N_{mis}\frac{a}{f} + \delta\right)$$

and cause the **annihilation** of the network when $\rho_{DW}(t_{ann}) \sim V_{mis}$.

▶ However ... if network is **long lived**, $\alpha \equiv \rho_{dw}/\rho_{tot}$ can be large at t_{ann} and generate a large **stochastic GW signal**

$$\Omega_{\text{gw}} h^2 \sim 10^{-10} \tilde{\epsilon} \left(\frac{10.75}{g_*(T_{\star})} \right)^{\frac{1}{3}} \left(\frac{\alpha(t_{ann})}{0.01} \right)^2$$

[Hiramatsu+ 13', **RZF,** Notari, Pujolàs, Rompineve 21']

within reach of **current** GW detectors!

Outline

- 1. Networks of topological defects:
 - Domain Walls and Gravitational waves

- 2. The heavy QCD axion case
- 3. Hints at pulsar timing arrays
- 4. Conclusion

Example: the Heavy QCD axion

Motivation: 'Quality problem'

PQ breaking terms are in general **misaligned** ($\delta \sim 1$) and can spoil the solution to the strong CP problem.

⇒ PQ symmetry needs to be of high quality.

Example: the Heavy QCD axion

• Motivation: 'Quality problem'

PQ breaking terms are in general **misaligned** ($\delta \sim 1$) and can spoil the solution to the strong CP problem.

⇒ PQ symmetry needs to be of high quality.

Improved quality:

QCD axion is coupled to a heavier sector ($\Lambda_H \gg \Lambda_{QCD}$), aligned with QCD.

$$V \sim (\Lambda_{QCD}^4 + \Lambda_H^4) \cos\left(N_{DW}\frac{a}{f}\right)$$

- Examples:
 - small instantons, strong coupling effects at high energies;
 - Z_2 symmetry;
 - additional gauge group with unification heavier

Quite predictive...

Size of misaligned contributions

Large

Small

- → DW network is short lived
- ightarrow Sizeable correction to $heta_{SM}$

$$\Delta\theta \sim r^4$$
, $r \equiv V_{mis}/\Lambda_H$

(probed at neutron/proton EDM experiments)

- → DW network is long lived
- → DW energy density becomes large

(large GW production)

Results

Outline

- 1. Networks of topological defects:
 - Domain Walls and Gravitational waves

- 2. The heavy QCD axion case
- 3. Hints at pulsar timing arrays?
- 4. Conclusion

Hints of DWs at PTAs?

- Pulsar Timing Array (PTA) observatories time the radio signals from many (an array) of milisecond pulsars.
- 3 different collaborations (EPTA, NANOGrav, PPTA) found evidence for a signal in time residuals.
 - Data well fitted by a stochastic GW background.
 - Compatible with signal from supermassive BH binaries.
 - But early universe origin also possible. (e.g. 1st order PT, cosmic strings.)

[Bian+ 20', Craig+ 20', Chiang+ 20', Sakharov 21', Wang 22']

- We performed a dedicated search for domains walls in NanoGRAV12 and IPTA DR2 datasets.

[RZF, F. Rompineve, A. Notari, O. Pujolàs, 22']

• Network of DWs with σ ~(40-100 TeV)³, T_{ann} ~20-50 MeV provide a good fit to both datasets (as good as SMBH binaries).

[**RZF,** F. Rompineve, A. Notari, O. Pujolàs, 22']

- But network remnants are dangerous:
 - Decay to dark radiation will be fully probes with future CMB surveys!
 - Decay to SM (e.g. Heavy QCD axion) brings additional collider signatures.

Conclusions

- **Domain walls** are the outcome of many extensions of the SM (e.g. axionic models). Their **tendency for domination** leads to **strong cosmological signals**.
- The Heavy QCD axion leads to a very predictive GW+EDM signal that is already being probed at LIGO.
- **PTA observatories** have found **evidence** for a time delays.

 DW interpretation brings other cosmological or laboratory signatures that allow to distinguish from other onterpretations.
- Better numerical simulations of DW networks needed to improve the modelling of the GW signal.

Extra slides

Spectrum

[RZF, Notari, Pujòlas, Rompineve 21'] [Hiramatsu et al. 13']

$$\Lambda_{\rm H} = 10^{10} \ {\rm GeV}, \ f \simeq 10^{11} \ {\rm GeV}, \Delta\theta \simeq 8 \cdot 10^{-13}$$
 $\Lambda_{\rm H} = 10^{11} \ {\rm GeV}, \ f \simeq 1.6 \cdot 10^{11} \ {\rm GeV},$ $\Delta\theta \simeq 1.5 \cdot 10^{-11}$ $\Delta\theta \simeq 1.5 \cdot 10^{-11}$

