

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

THE SEARCH OF DARK SATELLITES WITH GAMMA RAYS

Miguel A. Sánchez-Conde

Departamento de Física Teórica & Instituto de Física Teórica IFT UAM/CSIC Universidad Autónoma de Madrid

miguel.sanchezconde@uam.es

COSMO'22 Rio de Janeiro, August 22–26 2022

CDM HALO SUBSTRUCTURE

GHALO simulation [Stadel+o9]

luminous matter

DARK SATELLITES

Milky Way virial radius

GHALO simulation [Stadel+o9]

Contract of Contract

DM subhalos (a.k.a. 'dark satellites')

The most massive subhalos will host visible satellite galaxies Light subhalos expected to remain completely dark.

[Sawala+15]

HOW TO SEARCH FOR DARK SATELLITES?

X

Milky Way virial radius

GHALO simulation [Stadel+o9]

Dark satellite searches

I. (Strong) LENSING

[Vegetti+10,12,18; Hezaveh+16; Nierenberg+14,17; Birrer+17; Alexander+19; Varma+20; Meneghetti+20]

II. STELLAR GAPS

[Carlberg 12,15; Erkal+15, 16, 17; Price-Whelan+18 Boer+18; Banik+19; Bonaca+19; Malhan+19]

DARK SATELLITE SEARCHES: III. GAMMA RAYS

If dark matter (DM) is made of WIMPs \rightarrow subhalo annihilates \rightarrow gamma rays

DARK SATELLITE SEARCHES: III. GAMMA RAYS

- If DM is made of WIMPs \rightarrow subhalo annihilates \rightarrow gamma rays
- Some dark satellites could be bright enough in gamma rays to be detected.
- Maybe the only way to probe subhalo masses below ~10⁷ solar masses

 \rightarrow critical to differentiate CDM from e.g. WDM cosmology.

• The only subhalo search that provides info on the nature of the DM particle.

Dark satellite search with gammas: general methodology

Around 1/3 of sources in gamma-ray catalogs are unidentified (unIDs) (e.g., ~1700 unIDs in the latest '4FGL-DR2' Fermi-LAT catalog)

Exciting possibility: some of them may be subhalos annihilating to gammas!

Search for potential DM subhalo candidates by identifying those unIDs compatible with DM subhalo annihilation.

 \rightarrow Apply a series of '*filters*' based on expected DM signal properties.

Possible results:

- 1. A few VIP candidates → dedicated data analyses, follow-up campaigns...
- 2. A few more subhalo candidates (yet uncertain) \rightarrow set DM constraints
- 3. No unIDs compatible with DM \rightarrow best achievable constraints

DM constraints from gamma-ray unID sources?

VS.

dark subhalo J-factors, number density, spatial extension...

observed γ-ray sky

instrument sensitivity to DM annihilation, pool of unID sources

Number of predicted detectable subhalos VS. number of unIDs compatible with DM

DM CONSTRAINTS

[The less DM candidates among unIDs the better the constraints]

Latest search in Fermi-LAT catalogs (I)

- List of O(10) VIP candidates in the 2FGL+2FHL+ 3FGL Fermi LAT catalogs.
- Dedicated **spectral analysis** of best DM subhalo candidates → improved constraints
- DM limits competitive with other targets, reach thermal cross section.
- 4FGL search ongoing (MASC+, in prep.)

Latest search in Fermi-LAT catalogs (II)

- Study of the **spatial properties** of the expected DM-induced gamma-ray emission and of the implications for Fermi-LAT detectability and DM constraints.
 - Realistic LAT simulations of 'typical' (extended) subhalos
 - Careful spatial analysis of O(100) VIP candidates.
- Fermi should tipically detect a subhalo extension O(0.2 0.3 degrees)
- More robust/realistic DM constraints, but weaker than previous ones by a factor 2-3.

[J. Coronado-Blázquez, MASC, A. Aguirre-Santaella, J. Pérez-Romero; 2204.00267]

Numerical simulation work is critical

[Coronado-Blázquez, MASC+19] – [Aguirre-Santaella, MASC+, in prep.]

A lot of work done so far...

... but further work needed and ongoing

Recent insight into subhalo survival

[Aguirre-Santaella, MASC, Angulo, Ogiya, Stücker, astro-ph/2207.08652]

- High-res numerical simulations of subhalos falling into a Milky-Way-size halo analytical potential.
- Improved version of the DASH code (Ogiya+19).
- Galactic potential includes baryonic components (gas, stars, bulge).
- Goal is to understand subhalo mass loss and implications for dark satellites' search.

Future of dark satellite search in γ rays

- Dedicated observing proposals at other wavelengths for VIP candidates.
- More refined spectral/spatial unID 'filters' and data analyses.
- Search in upcoming gamma-ray catalogs.
- Further numerical work to refine predictions and constraints.
- Use of new techniques (e.g., Machine Learning) to disentangle true source type.
- Use of future gamma-ray facilities (CTA, AMEGO, e-ASTROGRAM...)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Thanks!

Miguel A. Sánchez-Conde

miguel.sanchezconde@uam.es https://projects.ift.uam-csic.es/damasco/

Daniel López / IAC

ADDITIONAL MATERIAL

Subhalos as a test of the cosmological model

Substructure abundance very similar in both cases above ~10⁸ M_{sun} Below, differences should be significant \rightarrow cosmological test

DARK SATELLITE SEARCHES: III. GAMMA RAYS

- If DM is made of WIMPs \rightarrow subhalo annihilates \rightarrow gamma rays \bullet
- Maybe the only way to probe subhalo masses below ~107 solar masses ightarrow
- The only type of search that provides info on the nature of the DM particle. ightarrow

DM constraints from LAT unIDs?

N-body simulations \rightarrow dark satellites' J-factors, typical angular sizes, etc.

LAT sensitivity to DM annihilation \rightarrow number of detectable subhalos.

Number of predicted detectable subhalos VS. number of remaining unIDs in catalogs.

The less DM candidates left in catalogs the better the DM constraints.

(Some) past work

Brun+11

Mirabal+16

Also: Tasitsiomi&Olinto 02; Pieri+05; Kuhlen+07; Springel+08; Anderson+10; Belikov+12; Ackermann+12; Hooper+16; Schoonenberg+16; Abeysekara+19

Latest search in Fermi-LAT catalogs (I)

[J. Coronado-Blázquez, MASC et al., JCAP 07 (2019) 020]

- Search in the 3FGL, 2FHL and 3FHL Fermi-LAT catalogs.
- Careful unIDs 'filtering' work.
- Precise characterization of LAT sensitivity to DM annihilation.
- Best knowledge of subhalos' structural properties (MASC&Prada14, Moliné+17)
- Repopulation of VL-II N-body simulation with low-mass subhalos below resolution limit.

Latest search in Fermi-LAT catalogs (II)

[J. Coronado-Blázquez, MASC et al. (2019)

3 16e-10

3FGL, $\tau^+\tau^-$

2.0

 $F_{min}[ph \cdot cm^{-2} \cdot s^{-1}]$

 $\overline{40}$

|b|[deg]

60

4.18e-09

 $m_{\gamma} = 10 \text{ GeV}$

 $m_{\rm v} = 100 \, {\rm GeV}$

 $m_{\chi} = 1000 \text{ GeV}$ $m_{\chi} = 10000 \text{ GeV}$

- Remaining 44 DM subhalo candid
 → Dedicated LAT spectral and s_{1 10⁻⁹}
- DM spectral models are compared
 → Only 7 sources marginally cor^{11/2} 10⁻¹⁰
- New (shorter) DM subhalo candid

ria a likelihood ratio test. istically significant).

tringent DM constraints.

 10^{4}

25

Importance of unIDs "filtering"

[J. Coronado-Blázquez, MASC et al., JCAP 07 (2019) 020]

- $< \sigma v >$ proportional to J-factor \rightarrow less unIDs means better constraints
- Exponential rise in constraining power below ~20% of sources in every catalog
- 20% = 202 sources in 3FGL, 10 in 2FHL and 35 in 3FHL
- From these numbers down, every source we remove has a large impact

Some OPEN ISSUES on subhalo population

(most relevant for gamma-ray searches)

- Precise subhalo structural properties
- Subhalo survival (to tidal stripping; baryons; dynamical friction).
- Role of baryons on:
 - Subhalo abundance.
 - Subhalo structure.
- Dependence on distance to host halo center and mass.

[In particular at Solar Galactocentric radius and for < 10 million solar masses]

OPEN ISSUES (I): Role of baryons

FIRE Hydrodynamics

Pure N-Body

100 kpc

100 kpc

Up to a factor ~2 reduction in substructure within ~100 kpc A factor ~10 within ~25 kpc.

OPEN ISSUES (II): Subhalo survival

No substructure within ~20 kpc with $V_{max} > 5$ km/s. Yet, radial distribution in hydro simulations do not match observations.

Van den Bosch+18; van den Bosch&Ogiya 18:

- Subhalo disruption is numerical in origin
- Bound remnant survives provided it is well resolved in the simulation

\rightarrow What is the actual subhalo radial distribution?

[Also Diemand+07; Peñarrubia+10; Errani&Navarro 20, Webb & Bovy 20]