# BBN Photodisintegration Constraints on Gravitationally Produced Vector Bosons



#### BBN Photodisintegration Constraints on Gravitationally Produced Vector Bosons

## BBN Photodisintegration Constraints on Gravitationally Produced Vector Bosons

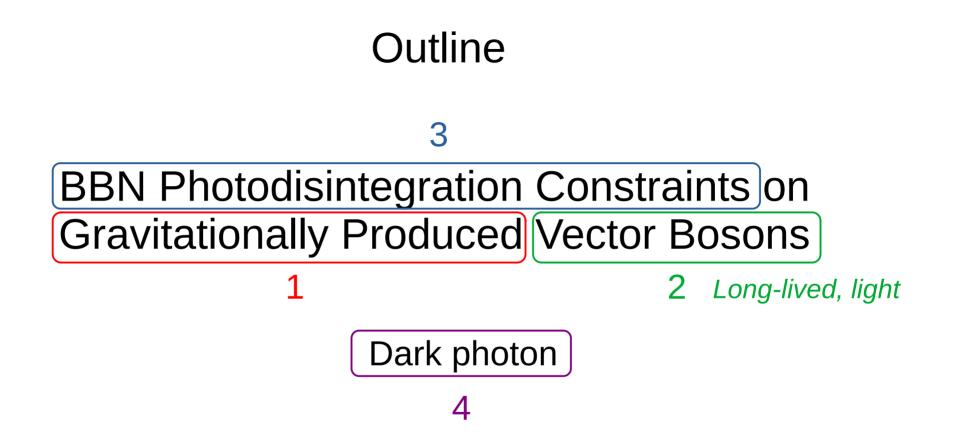
# BBN Photodisintegration Constraints on Gravitationally Produced Vector Bosons

2 Long-lived, light

#### 3

# BBN Photodisintegration Constraints on Gravitationally Produced Vector Bosons

2 Long-lived, light



Any fields <u>not</u> conformally coupled to gravitational field (e.g. all massive fields) will be produced from cosmic expansion

Any fields <u>not</u> conformally coupled to gravitational field (e.g. all massive fields) will be produced from cosmic expansion

Very small amount today [Parker, PRL 21, 562 (1968)]

Any fields <u>not</u> conformally coupled to gravitational field (e.g. all massive fields) will be produced from cosmic expansion

Very small amount today [Parker, PRL 21, 562 (1968)]

Can be significant during early times at the end of inflation [Ford, PRD 35, 2955 (1986)]  $\rho_{\text{scalar}} \sim H_L^8 / M_{\text{Pl}}^4$  Hubble scale at the end of inflation

Any fields <u>not</u> conformally coupled to gravitational field (e.g. all massive fields) will be produced from cosmic expansion

Very small amount today [Parker, PRL 21, 562 (1968)]

Can be significant during early times at the end of inflation [Ford, PRD 35, 2955 (1986)]  $\rho_{\text{scalar}} \sim H_I^8 / M_{\text{Pl}}^4$  Hubble scale at the end of inflation

🛨 Basic idea

$$a_{\mathbf{k}}^{\text{late}} = \alpha_{\mathbf{k}}^* a_{\mathbf{k}}^{\text{early}} - \beta_{\mathbf{k}} a_{\mathbf{k}}^{\dagger \text{early}} \qquad a_{\mathbf{k}}^{\text{early}} |0^{\text{early}}\rangle = 0$$
$$\langle \hat{N}^{\text{late}} \rangle = \int \frac{d^3 k}{(2\pi)^3} \langle 0^{\text{early}} |a_{\mathbf{k}}^{\dagger \text{late}} a_{\mathbf{k}}^{\text{late}} |0^{\text{early}}\rangle = V \int \frac{d^3 k}{(2\pi)^3} |\beta_{\mathbf{k}}|^2$$

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^2 A_{\mathbf{k}}^{T,L} + \omega_{T,L}^2 A_{\mathbf{k}}^{T,L} = 0$$

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^2 A_{\mathbf{k}}^{T,L} + \omega_{T,L}^2 A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \rightarrow 0$ 

$$\omega_T^2 = k^2 + a^2 m_V^2$$

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^{2} A_{\mathbf{k}}^{T,L} + \omega_{T,L}^{2} A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \rightarrow 0$ 

$$\omega_T^2 = k^2 + a^2 m_V^2$$
 suppressed

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^{2} A_{\mathbf{k}}^{T,L} + \omega_{T,L}^{2} A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \to 0$  $\omega_T^2 = k^2 + a^2 m_V^2$  suppressed

One longitudinal mode: like minimally coupled scalar  $m_V \rightarrow 0$ 

$$\omega_L^2 = k^2 + a^2 m_V^2 + \frac{1}{6} \frac{k^2 a^2}{k^2 + a^2 m_V^2} R + 3 \frac{k^2 a^4 m_V^2 H^2}{(k^2 + a^2 m_V^2)^2}$$

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^{2} A_{\mathbf{k}}^{T,L} + \omega_{T,L}^{2} A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \to 0$  $\omega_T^2 = k^2 + a^2 m_V^2$  suppressed

One longitudinal mode: like minimally coupled scalar  $m_V \rightarrow 0$ 

$$\omega_L^2 = k^2 + a^2 m_V^2 + \underbrace{\frac{1}{6} \frac{k^2 a^2}{k^2 + a^2 m_V^2} R}_{\text{unsuppressed}} + 3 \frac{k^2 a^4 m_V^2 H^2}{(k^2 + a^2 m_V^2)^2}$$

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^2 A_{\mathbf{k}}^{T,L} + \omega_{T,L}^2 A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \to 0$  $\omega_T^2 = k^2 + a^2 m_V^2$  suppressed

One longitudinal mode: like minimally coupled scalar  $m_V \rightarrow 0$ 

$$\omega_L^2 = k^2 + a^2 m_V^2 + \underbrace{\frac{1}{6} \frac{k^2 a^2}{k^2 + a^2 m_V^2} R}_{\text{unsuppressed}} + 3 \frac{k^2 a^4 m_V^2 H^2}{(k^2 + a^2 m_V^2)^2}$$

 $\star$  Longitudinal mode can be copiously produced

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^{2} A_{\mathbf{k}}^{T,L} + \omega_{T,L}^{2} A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \rightarrow 0$  $\omega_T^2 = k^2 + a^2 m_V^2$  suppressed

One longitudinal mode: like minimally coupled scalar  $m_V \rightarrow 0$ 

 $\omega_L^2 = k^2 + a^2 m_V^2 + \underbrace{\frac{1}{6} \frac{k^2 a^2}{k^2 + a^2 m_V^2} R}_{\text{unsuppressed}} + \underbrace{3 \frac{k^2 a^4 m_V^2 H^2}{(k^2 + a^2 m_V^2)^2}}_{3 \frac{k^2 a^4 m_V^2 H^2}{(k^2 + a^2 m_V^2)^2}} \\ \begin{array}{c} \text{Isocurvature} \\ \text{perturbation} \\ \text{suppressed} \\ \text{for small } k \end{array}$ 

 $\star$  Longitudinal mode can be copiously produced

For a (light) massive vector boson  $m_V \ll H_I$  [Graham, Mardon, Rajendran, 1504.02102]

$$\partial_{\eta}^2 A_{\mathbf{k}}^{T,L} + \omega_{T,L}^2 A_{\mathbf{k}}^{T,L} = 0$$

Two transverse modes: like conformally coupled scalar  $m_V \rightarrow 0$  $\omega_T^2 = k^2 + a^2 m_V^2$  suppressed

One longitudinal mode: like minimally coupled scalar  $m_V \rightarrow 0$ 

 $\omega_L^2 = k^2 + a^2 m_V^2 + \left(\frac{1}{6} \frac{k^2 a^2}{k^2 + a^2 m_V^2} R\right) + \left(3 \frac{k^2 a^4 m_V^2 H^2}{(k^2 + a^2 m_V^2)^2}\right) \begin{array}{c} \text{perturbation} \\ \text{suppressed} \end{array}$ unsuppressed

Longitudinal mode can be copiously produced + Can be dark matter

Isocurvature for small k

The abundance of a light vector boson

$$Y_V = \frac{na^3}{sa^3} = \frac{T_{\rm RH}H_I}{4M_{\rm Pl}^2} \int \frac{d^3k}{(2\pi)^3} |\beta_{\bf k}|^2$$

During inflation (de-Sitter), during reheating (matter-dominated), after reheating (radiation-dominated) [Kolb, Long, 2009.03828]

$$m_V Y_V \simeq \kappa \begin{cases} 1.4 \times 10^{-7} \,\text{GeV} \left(\frac{H_I}{10^{12} \,\text{GeV}}\right)^2 \left(\frac{m_V}{10 \,\text{MeV}}\right)^{1/2}, & r_T = 1\\ 2.8 \times 10^{-8} \,\text{GeV} \left(\frac{H_I}{10^{14} \,\text{GeV}}\right)^{5/2}, & r_T = 10^6 \end{cases}$$

 $\kappa \sim 1 - 10$  model dependency

 $r_T \equiv \frac{T_{\max}}{T_{\rm RH}}$  5/21

The light vector boson is a dark matter if  $\tau > 4.4 \times 10^{17} \, \mathrm{s}$ 

Dark matter constraint  $m_V Y_V \le 4.36 \times 10^{-10} \,\mathrm{GeV}$ 

The light vector boson is a dark matter if  $\tau > 4.4 \times 10^{17} \, \mathrm{s}$ 

Dark matter constraint  $m_V Y_V \le 4.36 \times 10^{-10} \,\mathrm{GeV}$ 

Using AlterBBN [Arbey, Auffinger, Hickerson, Jenssen, 1806.11095], modification of V to Hubble rate during BBN imposes  $m_V Y_V < 0.9 \times 10^{-6} \,\text{GeV}$ 

The light vector boson is a dark matter if  $\tau > 4.4 \times 10^{17} \, \mathrm{s}$ 

Dark matter constraint  $m_V Y_V \le 4.36 \times 10^{-10} \,\mathrm{GeV}$ 

Using AlterBBN [Arbey, Auffinger, Hickerson, Jenssen, 1806.11095], modification of V to Hubble rate during BBN imposes  $m_V Y_V < 0.9 \times 10^{-6} \,\text{GeV}$ 

If V were to be metastable dark matter

$$1.8 \times 10^{10} \,\text{GeV} \le H_I \kappa^{1/2} \le 9.9 \times 10^{10} \,\text{GeV}, \text{ for } r_T = 1,$$
  
 $H_I \kappa^{2/5} \le 1.9 \times 10^{13} \,\text{GeV}, \text{ for } r_T = 10^6$ 

The light vector boson is a dark matter if  $\tau > 4.4 \times 10^{17} \, \mathrm{s}$ 

Dark matter constraint  $m_V Y_V \le 4.36 \times 10^{-10} \,\mathrm{GeV}$ 

Using AlterBBN [Arbey, Auffinger, Hickerson, Jenssen, 1806.11095], modification of V to Hubble rate during BBN imposes  $m_V Y_V < 0.9 \times 10^{-6} \, {\rm GeV}$ 

If V were to be metastable dark matter

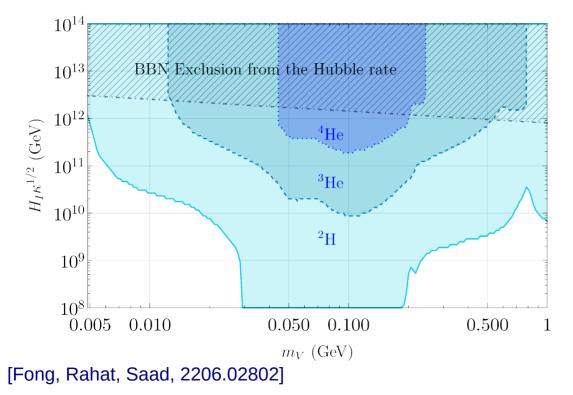
$$1.8 \times 10^{10} \,\text{GeV} \le H_I \kappa^{1/2} \le 9.9 \times 10^{10} \,\text{GeV}, \text{ for } r_T = 1,$$
  
 $H_I \kappa^{2/5} \le 1.9 \times 10^{13} \,\text{GeV}, \text{ for } r_T = 10^6$ 

We also impose such that entropy injection between BBN and recombination (CMB) is less than 1%

# Summary

#### Kinetic mixing

If the light vector boson were MeV-GeV scale dark photon  $\epsilon = 5 \times 10^{-14}$ 

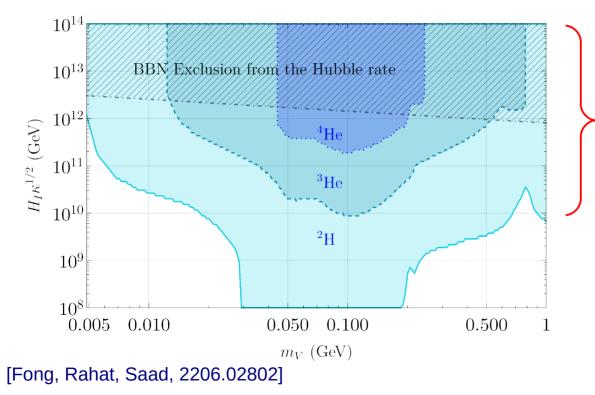


$$-\mathcal{L} \supset \frac{\epsilon}{2} F_{\mu
u} V^{\mu
u}$$

# Summary

**Kinetic mixing** 

If the light vector boson were MeV-GeV scale *dark photon*  $\epsilon = 5 \times 10^{-14}$ 



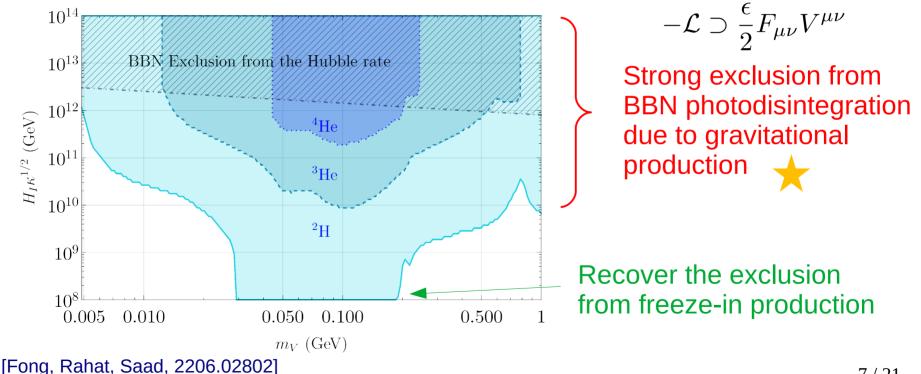
$$-\mathcal{L} \supset rac{\epsilon}{2} F_{\mu
u} V^{\mu
u}$$

Strong exclusion from BBN photodisintegration due to gravitational production

# Summary

**Kinetic mixing** 

If the light vector boson were MeV-GeV scale *dark photon*  $\epsilon = 5 \times 10^{-14}$ 



The interactions of a general light vector boson with us (SM)

$$-\mathcal{L} \supset \overline{f} \gamma^{\mu} \left( g_{V} Q_{X,f} + e \epsilon Q_{\text{em},f} \right) P_{X} f V_{\mu}$$
  
Kinetic mixing  $-\mathcal{L} \supset \frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$ 

 $m_V \ll H_I$ Stückelberg mass or by Higgs mechanism at higher scale

The interactions of a general light vector boson with us (SM)

$$-\mathcal{L} \supset \overline{f}\gamma^{\mu} \left(g_{V}Q_{X,f} + e\epsilon Q_{\mathrm{em},f}\right) P_{X} f V_{\mu}$$
  
Kinetic mixing  $-\mathcal{L} \supset \frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$ 

 $m_V \ll H_I$ Stückelberg mass or by Higgs mechanism at higher scale

New gauge U(1)

 $L_e - L_\mu, L_e - L_\tau, L_\mu - L_\tau$  anomaly-free

The interactions of a general light vector boson with us (SM)

$$-\mathcal{L} \supset \overline{f} \gamma^{\mu} \left( g_{V} Q_{X,f} + e \epsilon Q_{\mathrm{em},f} \right) P_{X} f V_{\mu}$$
  
Kinetic mixing  $-\mathcal{L} \supset \frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$ 

 $m_V \ll H_I$ Stückelberg mass or by Higgs mechanism at higher scale

New gauge U(1)

 $L_e - L_\mu, L_e - L_\tau, L_\mu - L_\tau$  anomaly-free B - L, B, L new d.o.f needed, assumed all of them heavy

For MeV-GeV vector boson, all possible decay channels allowed by kinematic

$$V \to e^+ e^- \quad V \to \mu^+ \mu^- \quad V \to \pi^0 \gamma \quad V \to \pi^+ \pi^- \quad V \to \pi^+ \pi^- \pi^0$$

Cascade to electromagnetic spectra: electrons, positrons and photons

$$\frac{dN}{dE_{\alpha}}\Big|_{V} = \sum_{a} BR(V \to a) \left. \frac{dN^{(a)}}{dE_{\alpha}} \right|_{V}, \quad \alpha = e, \gamma, \quad a = e^{+}e^{-}, \mu^{+}\mu^{-}, \pi^{+}\pi^{-}, \pi^{0}\gamma, \pi^{0}\pi^{+}\pi^{-}$$

For MeV-GeV vector boson, all possible decay channels allowed by kinematic

$$V \to e^+ e^- \quad V \to \mu^+ \mu^- \quad V \to \pi^0 \gamma \quad V \to \pi^+ \pi^- \quad V \to \pi^+ \pi^- \pi^0$$

Cascade to electromagnetic spectra: electrons, positrons and photons

$$\frac{dN}{dE_{\alpha}}\Big|_{V} = \sum_{a} BR(V \to a) \left. \frac{dN^{(a)}}{dE_{\alpha}} \right|_{V}, \quad \alpha = e, \gamma, \quad a = e^{+}e^{-}, \mu^{+}\mu^{-}, \pi^{+}\pi^{-}, \pi^{0}\gamma, \pi^{0}\pi^{+}\pi^{-}$$

The sectra in the rest frame of V https://github.com/shengfong/lightvectorboson

For MeV-GeV vector boson, all possible decay channels allowed by kinematic

$$V \to e^+ e^- \quad V \to \mu^+ \mu^- \quad V \to \pi^0 \gamma \quad V \to \pi^+ \pi^- \quad V \to \pi^+ \pi^- \pi^0$$

Cascade to electromagnetic spectra: electrons, positrons and photons

$$\frac{dN}{dE_{\alpha}}\Big|_{V} = \sum_{a} BR(V \to a) \left. \frac{dN^{(a)}}{dE_{\alpha}} \right|_{V}, \quad \alpha = e, \gamma, \quad a = e^{+}e^{-}, \mu^{+}\mu^{-}, \pi^{+}\pi^{-}, \pi^{0}\gamma, \pi^{0}\pi^{+}\pi^{-}$$

Spectra in the rest frame of V https://github.com/shengfong/lightvectorboson

Future direction: extend to heavier V

Double photon pair creation

$$\gamma \gamma_{BG} \to e^+ e^- \qquad E_{\rm th}^{e^+ e^-} \approx \frac{m_e^2}{22T} \approx 2 \,{\rm MeV} \frac{6 \,{\rm keV}}{T}$$

If background (BG) photon is hot, threshold energy is low, high energy photons quickly depleted due to pair production

Double photon pair creation

$$\gamma\gamma_{BG} \to e^+e^ E_{\rm th}^{e^+e^-} \approx \frac{m_e^2}{22T} \approx 2\,{\rm MeV}\frac{6\,{\rm keV}}{T}$$

If background (BG) photon is hot, threshold energy is low, high energy photons quickly depleted due to pair production

To disintegrate light elements

| D-disintegration               | $E_{\mathrm{th}}^{\mathrm{D}} = 2.22 \mathrm{MeV}$ |
|--------------------------------|----------------------------------------------------|
| <sup>3</sup> He-disintegration | $E_{\rm th}^{\rm D} = 5.49 \mathrm{MeV}$           |
| <sup>4</sup> He-disintegration | $E_{\rm th}^{\rm D} = 19.81 \mathrm{MeV}$          |

Double photon pair creation

$$\gamma \gamma_{BG} \to e^+ e^- \qquad E_{\rm th}^{e^+ e^-} \approx \frac{m_e^2}{22T} \approx 2 \,{\rm MeV} \frac{6 \,{\rm keV}}{T}$$

If background (BG) photon is hot, threshold energy is low, high energy photons quickly depleted due to pair production

To disintegrate light elements

D-disintegration $E_{\rm th}^{\rm D} = 2.22 \,{\rm MeV}$ <sup>3</sup>He-disintegration $E_{\rm th}^{\rm D} = 5.49 \,{\rm MeV}$ <sup>4</sup>He-disintegration $E_{\rm th}^{\rm D} = 19.81 \,{\rm MeV}$ 

To have sufficient photons to photodisintegrate

 $T \lesssim 10 \, {
m keV}$   $\tau \lesssim 10^4 \, {
m s}$ after BBN completed  $^{10/21}$ 

Implementation in ACROPOLIS [Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]

$$\frac{d\mathcal{N}_a}{dt}(E) = \mathcal{S}_a(E) - \Gamma_a(E)\mathcal{N}_a(E); \quad \mathcal{N}_a \equiv \frac{dn_a}{dE}, \quad a = \gamma, e \qquad \begin{array}{c} \gamma\gamma_{BG} \to \gamma\gamma\\ \gamma N \to e^+e^-N\\ \gamma e_{BG}^- \to \gamma e^-\\ \gamma e^\pm\gamma_{BG} \to e^\pm\gamma \end{array}$$

Implementation in ACROPOLIS [Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]

$$\frac{d\mathcal{N}_{a}}{dt}(E) = \mathcal{S}_{a}(E) - \Gamma_{a}(E)\mathcal{N}_{a}(E); \quad \mathcal{N}_{a} \equiv \frac{dn_{a}}{dE}, \quad a = \gamma, e \qquad \begin{array}{c} \gamma\gamma_{BG} \to \gamma\gamma\\ \gamma N \to e^{+}e^{-}N \end{array}$$
Rate >> Expansion 
$$\frac{d\mathcal{N}_{a}}{dt}(E) \to 0 \implies \mathcal{N}_{a}(E) = \frac{\mathcal{S}_{a}(E)}{\Gamma_{a}(E)} \qquad \begin{array}{c} \gamma e_{BG}^{-} \to \gamma\gamma\\ \gamma e^{\pm}\gamma_{BG} \to e^{\pm}\gamma \end{array}$$

Implementation in ACROPOLIS [Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]

$$\frac{d\mathcal{N}_{a}}{dt}(E) = \mathcal{S}_{a}(E) - \Gamma_{a}(E)\mathcal{N}_{a}(E); \quad \mathcal{N}_{a} \equiv \frac{dn_{a}}{dE}, \quad a = \gamma, e \qquad \begin{array}{c} \gamma\gamma_{BG} \to \gamma\gamma\\ \gamma N \to e^{+}e^{-}N \end{array}$$
Rate >> Expansion 
$$\frac{d\mathcal{N}_{a}}{dt}(E) \to 0 \implies \mathcal{N}_{a}(E) = \frac{\mathcal{S}_{a}(E)}{\Gamma_{a}(E)} \qquad \begin{array}{c} \gamma e_{BG}^{-} \to \gamma e^{-}\\ \gamma e^{\pm}\gamma_{BG} \to e^{\pm}\gamma \end{array}$$
Source 
$$\mathcal{S}_{a} = e^{-t/\tau} \frac{n_{V}^{0}}{\tau} \frac{dN_{a}}{dE} + \sum_{b} \int_{E}^{E_{X}} dE' K_{ab}(E, E')\mathcal{N}_{b}(E')$$

Implementation in ACROPOLIS [Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]

$$\frac{d\mathcal{N}_{a}}{dt}(E) = \mathcal{S}_{a}(E) - \Gamma_{a}(E)\mathcal{N}_{a}(E); \quad \mathcal{N}_{a} \equiv \frac{dn_{a}}{dE}, \quad a = \gamma, e \qquad \gamma \gamma BG \rightarrow \gamma \gamma$$

$$\text{Rate} >> \text{Expansion} \quad \frac{d\mathcal{N}_{a}}{dt}(E) \rightarrow 0 \implies \mathcal{N}_{a}(E) = \frac{\mathcal{S}_{a}(E)}{\Gamma_{a}(E)} \qquad \gamma e^{\pm}_{BG} \rightarrow \gamma e^{-}$$

$$\text{Source} \qquad \mathcal{S}_{a} = e^{-t/\tau} \frac{n_{V}^{0}}{\tau} \frac{dN_{a}}{dE} + \sum_{b} \int_{E}^{E_{X}} dE' K_{ab}(E, E')\mathcal{N}_{b}(E')$$

roduction of V: gravitational, freeze-in

Implementation in ACROPOLIS [Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]

$$\frac{d\mathcal{N}_{a}}{dt}(E) = \mathcal{S}_{a}(E) - \Gamma_{a}(E)\mathcal{N}_{a}(E); \quad \mathcal{N}_{a} \equiv \frac{dn_{a}}{dE}, \quad a = \gamma, e \qquad \gamma\gamma_{BG} \to \gamma\gamma$$
Rate >> Expansion 
$$\frac{d\mathcal{N}_{a}}{dt}(E) \to 0 \implies \mathcal{N}_{a}(E) = \frac{\mathcal{S}_{a}(E)}{\Gamma_{a}(E)} \qquad \gamma e_{BG}^{-} \to \gamma e^{-}$$
Source 
$$\mathcal{S}_{a} = e^{-t/\tau} \underbrace{\eta_{V}^{0}}_{\tau} \underbrace{dN_{a}}_{dE} + \sum_{b} \int_{E}^{E_{X}} dE' K_{ab}(E, E')\mathcal{N}_{b}(E')$$
Production of V: gravitational, freeze-in Primary EM spectra

https://github.com/shengfong/lightvectorboson

Implementation in ACROPOLIS[Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]Initial conditions after BBN from AlterBBN[Arbey, Auffinger, Hickerson, Jenssen, 1806.11095]Photodisintegrations of light elements are described by $dV_4$  $\int_{-\infty}^{\infty}$ 

$$\frac{dY_A}{dt} = \sum_i Y_i \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+i\to A}(E_\gamma) - Y_A \sum_f \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+A\to f}(E_\gamma)$$

Implementation in ACROPOLIS[Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]Initial conditions after BBN from AlterBBN[Arbey, Auffinger, Hickerson, Jenssen, 1806.11095]Photodisintegrations of light elements are described by $\frac{dY_A}{dt} = \sum_i Y_i \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+i\to A}(E_\gamma) - Y_A \sum_f \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+A\to f}(E_\gamma)$ 

We (conservatively) solve till the epoch of matter-radiation equality

- Implementation in ACROPOLIS[Depta, Hufnagel, Schmidt-Hoberg, 2011.06518]Initial conditions after BBN from AlterBBN[Arbey, Auffinger, Hickerson, Jenssen, 1806.11095]Photodisintegrations of light elements are described by $\frac{dY_A}{dt} = \sum_i Y_i \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+i\to A}(E_\gamma) Y_A \sum_f \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+A\to f}(E_\gamma)$ We (conservatively) solve till the epoch of matter-radiation equality
  - We estimate "theoretical" errors

 $\sigma_{Y_A} = \max\left[|Y_A(\text{high}) - Y_A(\text{mean})|, |Y_A(\text{low}) - Y_A(\text{mean})|\right]$ 

Implementation in ACROPOLIS [Depta, Hufnagel, Schmidt-Hoberg, 2011.06518] Initial conditions after BBN from AlterBBN [Arbey, Auffinger, Hickerson, Jenssen, 1806.11095] Photodisintegrations of light elements are described by  $\frac{dY_A}{dt} = \sum_i Y_i \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+i\to A}(E_\gamma) - Y_A \sum_f \int_0^\infty dE_\gamma \mathcal{N}_\gamma(E_\gamma) \sigma_{\gamma+A\to f}(E_\gamma)$ 

We (conservatively) solve till the epoch of matter-radiation equality We estimate "theoretical" errors

 $\sigma_{Y_A} = \max\left[|Y_A(\text{high}) - Y_A(\text{mean})|, |Y_A(\text{low}) - Y_A(\text{mean})|\right]$ 

Consider exclusion at 95% for each element individually

$$Y_p = 0.245 \pm 0.003, \quad \frac{n_{\rm D}}{n_{\rm H}} = (2.547 \pm 0.025) \times 10^{-5}, \quad \frac{n_{^3\rm He}}{n_{\rm H}} = (1.1 \pm 0.2) \times 10^{-5}$$

#### $\star$ The light vector boson model for ACROPOLIS

https://github.com/shengfong/lightvectorboson [Fong, Rahat, Saad, 2206.02802]

$$m_V [\text{MeV}] \tau [\text{s}] T_0 [\text{MeV}] \frac{n_V}{n_\gamma} \Big|_{T_0} \text{BR}_{ee} \text{BR}_{\mu\mu} \text{BR}_{\pi\pi} \text{BR}_{\pi\gamma} \text{BR}_{3\pi}$$

#### $\star$ The light vector boson model for ACROPOLIS

https://github.com/shengfong/lightvectorboson [Fong, Rahat, Saad, 2206.02802]

$$m_V [\text{MeV}] \tau [\text{s}] T_0 [\text{MeV}] \frac{n_V}{n_\gamma} \Big|_{T_0} \text{BR}_{ee} \text{BR}_{\mu\mu} \text{BR}_{\pi\pi} \text{BR}_{\pi\gamma} \text{BR}_{3\pi}$$

./decayvector 700 1e8 1 1e-6 0.1 0.1 0.7 0.01 0.09

#### $\star$ The light vector boson model for ACROPOLIS

https://github.com/shengfong/lightvectorboson [Fong, Rahat, Saad, 2206.02802]

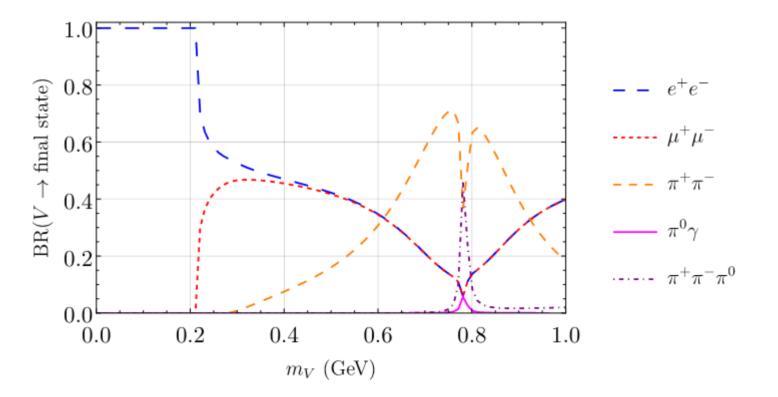
.

$$m_V [\text{MeV}] \tau [\text{s}] T_0 [\text{MeV}] \frac{n_V}{n_\gamma} \Big|_{T_0} BR_{ee} BR_{\mu\mu} BR_{\pi\pi} BR_{\pi\gamma} BR_{3\pi}$$

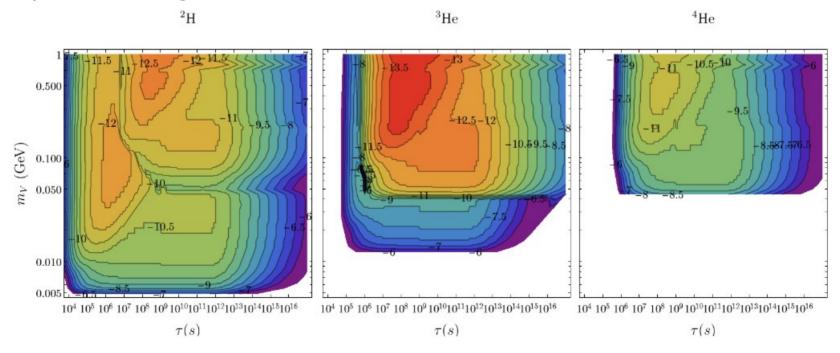
./decayvector 700 1e8 1 1e-6 0.1 0.1 0.7 0.01 0.09

Results: Yp = 0.224415, H2/p = 0.000395, He3/p = 0.006490Excluded by the BBN measurements at 2 sigma (default: He3/p not considered). Runtime - - 56.018600 mins - - -

Application  $-\mathcal{L} \supset e\epsilon Q_{\mathrm{em},f} \overline{f} \gamma^{\mu} P_X f V_{\mu}$ 

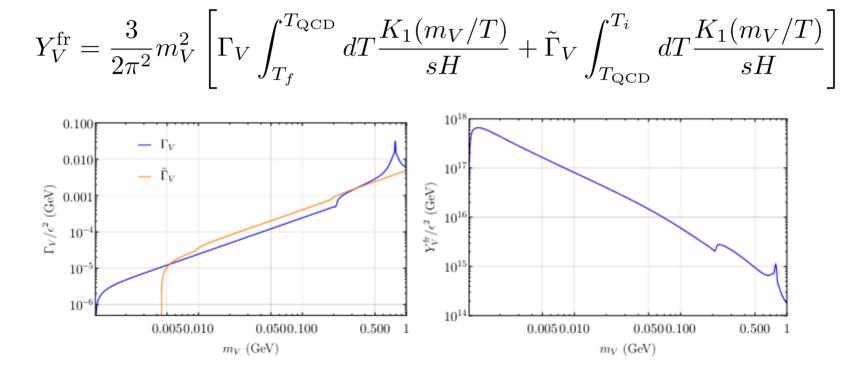


BBN photodisintegration constraints: deuterium, helium-3 & helium-4

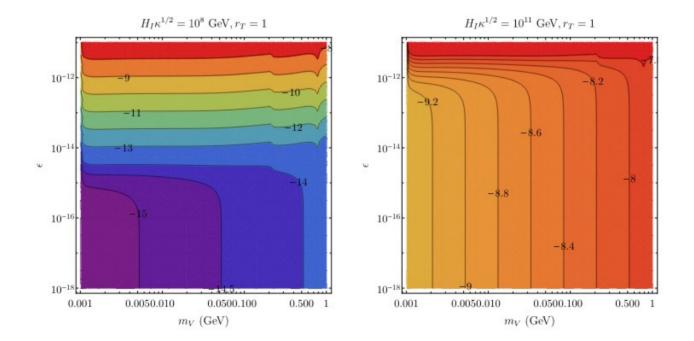


Contours are upper bounds on  $m_V Y_V / \text{GeV}$ 

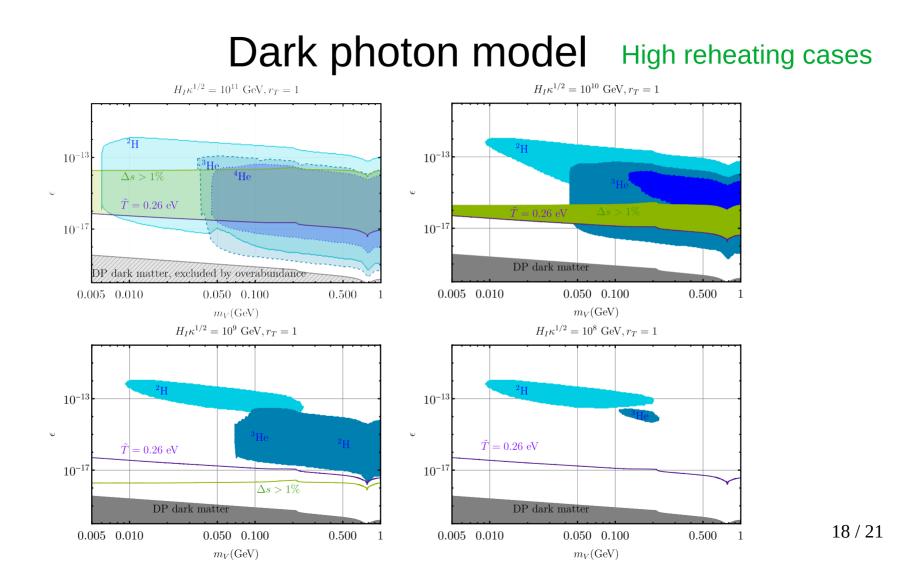
Freeze-in production



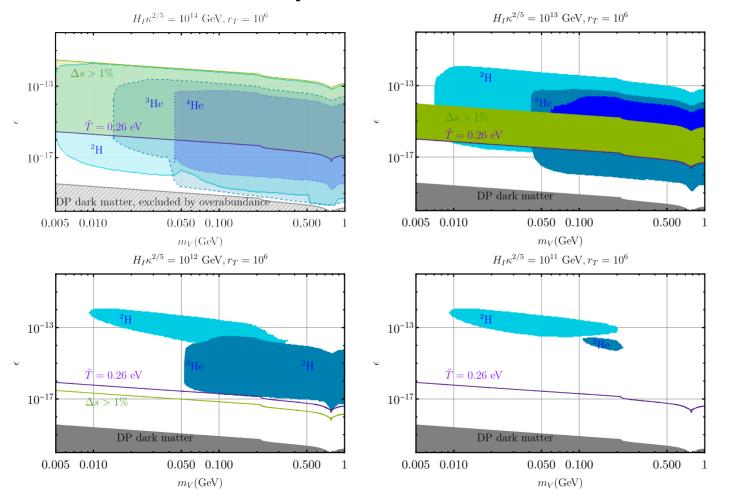
Gravitational plus freeze-in production



17 / 21



#### Dark photon model Low reheating cases



19 / 21

# Summary and outlook

- Gravitational production is relevant for any massive field when Hubble rate after inflation HI is greater than  $10^8$  GeV
- For gravitational produced long-lived particles with lifetime 10<sup><sup>4</sup></sup> s, BBN photodisintegration constraints are important
- We consider BBN photodisintegration effects of decaying light gauge boson (spectra and model file for ACROPOLIS) <a href="https://github.com/shengfong/lightvectorboson">https://github.com/shengfong/lightvectorboson</a>
- Example: large exclusion from BBN photodisintegration of parameter space of gravitationally produced dark photon with  $HI > 10^{8}$  GeV
- Extend the model to consider heavier vector boson