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1. Introduction
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* Indirect detection through stellar processes
 Why stars?
- Easily observable, abundant source

— Interior of stars dense enough that dark matter effects independent of specific
branching ratios

— Difficult to distinguish effects due to stellar physics from effects due to new physics
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2. 1D Stellar Evolution

 Assume spherical symmetry, no or _ 1
magnetic fields, no rotation OM  4mwr?p
 Zero metallicity (Type Il stars) oP - GM 0%r 1
OM — 4nr?2  Ot? Anr?
_ _ oL ol o0P
* MESA: Modules for Experiments in — =e—Cp— 4+ ——
Stellar Astrophysics oM ot p Ot
- Choice of input masses, a_T — — G]\iT \V/
chemical compositions, nuclear oM Ar P
networks, thermal properties,
etc.

€ Specific energy production rate
(erg g s™)

V Function related to energy
transport and opacity within star

— Produces time series of stellar
structure
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2. Pair Instability

* Massive stars (~140 — 240 M) reach temperatures and densities such that
electron-positron pairs are produced late in their life

¢« Yy —>e et
* Leads to a pair instability collapse
* Collapse triggers fusion of oxygen and silicon, which leads to violent bounce

— Complete destruction of star: pair instability supernova (PISN)

— Ejection of part of star: pulsational pair instability supernova (PPISN)
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2. Black Hole Mass Gap

. Due to PlSN an d PPISN’ b|ack A fow mass stars massive stars very massive stars Qo??-?o-?,.
holes cannot form with (initial) o
masses between ~50 and 140 M, zero metallicity i /

« Black holes can exist in the mass i/
gap (e.g. GW190521): '

100 |

Instability mass ggl,

— Multiple mergers
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- Uncertainties

helivm photodisinfegration

- New physics

(C) Alexander Heger, 2002
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|
supermassive stars ( > 50,000 solar masses)

final mass, remnant mass (solar masses, baryonic)

* Population statistics of black holes
may offer test of these
explanations

direct black hole formation
direct black hole formation

fallback

i i
black hole black hole ——

T T T T i T { =
1 3 10 30 100 300 1000
initial mass (solar masses)

The evolution and explosion of massive stars. S.E. Woosley,
A. Heger, T.A. Weaver, Mod. Rev. Phys. 74, 1015 (2002).
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3. Dark Matter Model

 Minimal assumptions about dark matter:

- Particles
— Either self-annihilate or non-negligible amount of anti-particle
— Annihilation products include some fraction of charged SM particles

» All charged particles heat up star

* Energy produced from one annihilation = twice DM mass, efficient source of
energy

Low-energy photons Positrons

Quarks \/\/\/\/\—> P
» e

® Medium-energy Electrons
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-—@®

a » Neutrinos

/ Ak \Leptons

Supersymmetric . \/\/\/\/\"$

RTINS Bosons Wrotons

Decay process =)

Sky and Telescope, Gregg Dinderman

https://www.universetoday.com/116293/marco-view-makes-dark-ma
tter-look-even-stranger/
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3. Dark Stars

-~ STELLAR LIFE CYCLE Q :
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Dark stars bumn brightly
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4. Stellar Evolution with Extra Energy

e Approximate the energy produced or 1

through dark matter as a constant

energy production rate density OM  Armrép

 Compared to nuclear energy, which — —

OP GM 9% 1

is strongly centrally peaked, treating M dmr2 Ot? 4mr?

energy from dark matter as a 5’_L —e_C 5’_T 4 éé’_P
constant is reasonable OM ot p Ot
ar  GMT v
OM  4nrdP
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4. Structural Changes

* Extra energy in the star — less energy required from nuclear reactions
« Effectively reducing size of core, relative to overall mass of star

* In some cases, changes to temperature and density gradients increase
convective mixing in star and can further reduce core mass

Temperature Profile without Extra Heating ” Temperature Profile with Extra Heating
—— Main Sequence —— Main Sequence
—— Beginning of He Burning —— Beginning of He Burning
o —— Beginning of O Burning 2 — Beg!nn!ng of O Burning
—— Beginning of Explosion —— Beginning of Core Collapse
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4. Avoiding Pair Instability

Density Temperature Tracks from Adding Non-Nuclear Energy
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Energy Added [10% ergg~15-1]

4. How unique is this result?
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4. Potential Tests

e Black hole population statistics (BHIMF)

* Depends significantly on dark matter astrophysics
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T Ilustrative examples:

Assuming all stars include non- Unscaled: 0.1% of stars with non-nuclear
nuclear energy energy, uniform distribution of energy fractions

Scaled: fraction of stars with non-nuclear energy
ranges from 1% to 0.01% inversely with non-

Fine print: these plots show (core-collapse) nuclear energy fraction

supernova precursors, rather than black hole mass

PRELIMINARY
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4. Dark Matter as energy source

° EDMpgas:<Uv>(pX)2/mX

-3

- Necessary density is p,~10""gcm

3%10 *°cm’s™! Y2 m H
X
(ov) ) (1GeV)

* Possible environments with high enough dark matter density:

- Centers of (small/dwarf) proto-galaxies
— Dark matter spikes around intermediate- or super-massive black holes

- High scattering cross-section
24 Aug 2022
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5. Conclusion

* Adding a non-nuclear energy source to a star can provide a means to
circumvent pair instability and avoid a pair instability supernova

* [t seems that this behavior appears at all stellar masses: there always exists
an amount of energy such that pair instability can be avoided.

* Potential opportunities to detect include black hole population statistics, from
gravitational wave observatories

e Although rare, environments where dark matter density is high enough that
this could potentially occur have been proposed.

* Potentially allows probes of:

— Dark matter distribution within halo
— Properties of dark matter (scattering vs annihilation cross section)

- Stellar processes
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