Searching for boson-star mergers in LIGO-Virgo data Juan Calderón Bustillo Galician Institute of High Energy Physics (IGFAE) University of Santiago de Compostela

... with Nicolas Sanchis-Gual, Alex Torres-Forne, Samson Leong, Koustav Chandra, Carlos Herdeiro, Tjonnie Li, Toni Font, Isaac Wong and Eugen Radu

COSMO'22, Rio de Janeiro, August 2022

Masses in the Stellar Graveyard

- Barely any (visible) pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.

LVC 2020

- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.

LVC 2020

- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.
 - Mild precession signature

 $P(\text{precession}|\text{qBBH}) \ 10:1$

- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.

- Barely any pre-merger emission
 - Remnant: intermediate-mass black hole.
 - If BBH: primary black hole in the pair instability supernova gap.
 - If BBH: primary black hole in the pair instability supernova gap.

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

Determines the maximum mass of the star (before collapsing to a black hole)

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

Determines the maximum mass of the star (before collapsing to a black hole)

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

Determines the maximum mass of the star (before collapsing to a black hole)

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

Oscillation frequency of the field:

Determines the "compactness" of the star

Boson mass:

Determines the maximum mass of the star (before collapsing to a black hole)

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field: ω/μ_V

Determines the "compactness" of the star

• Boson mass: μ_V

Determines the maximum mass of the star (before collapsing to a black hole)

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field: ω/μ_V

Determines the "compactness" of the star

• Boson mass: μ_V

Determines the maximum mass of the star (before collapsing to a black hole)

Compact objects with no event horizon (black hole mimickers)

- Can have spins larger than 1!!!
- Can produce highly spinning remnant black holes!

Two "new physics" parameters

• Oscillation frequency of the field: ω/μ_V

Determines the "compactness" of the star

• Boson mass: μ_V

Determines the maximum mass of the star (before collapsing to a black hole)

Considered good Dark Matter candidates

	Scalar (s=0)		Vector (Proca) (s=1)		Tensor (s=2)	
Star	Real	Complex	Real	Complex	Real	Complex
Non-Spinning Spinning		Unstable	No explicit solutions			&

: Form unstable cloud around black-holes. SR instability. System spins-down, Continous waves. Current mass constraints.

: Form stable cloud around black-holes. SR equilibrium, spin of the system is kept. No Continous waves.

Quasi-circular

Mergers:

Head-on

Only available for non-spinning stars

Spinning Proca star

Spinning Scalar star (Unstable)

Equal-mass, equal field frequency (equal spin)

Initial separation = 100M

- 759 numerical (head-on) simulations
 - JCB+ 2020: reduced to 96 simulations
- Include (2,2), (2,0), (3,2), (3,3) modes

0.92 -0.90 0.88 0.86 -0.84 0.82 -0.80 0.80 0.82 0.88 0.92 0.84 0.86 0.90

Oscillation frequency ω_1 vs ω_2 -- S190521g

Star field frequencies

CM gata

SN 88260

CM gails

Proca-Star

Evidence

VS.

Black-hole merger

Parameter estimates

Analyse events beyond GW190521

• GW200220 Part of the GWTC-3 catalogue (LVK 2021)

GW190426 Low significance (<1/year)

S200114f
 BBH estimate: 200Msun

Analyse events beyond GW190521

• GW200220 Part of the GWTC-3 catalogue (LVK 2021)

GW190426 Low significance (<1/year)

S200114f Heaviest merger to date

Analyse events beyond GW190521

GW200220 Not published as an event but as a loud trigger (Abbott + 2022)

GW190426 Significance much larger than other two events (1/30 year)

S200114f Extremely challenging for our waveform models

Not ruled out as a gravitational-wave detection

Best-fit waveforms (GW190521)

Event	GW190521	GW190426	GW200220	S200114f
$\mathcal{B}_{\mathrm{BBH}}^{\mathrm{Proca}}$	2.5	2.0×10^{-4}	0.05	3.7

- Proca-Star mildly favoured: GW190521, S200114f
- Proca-Star mildly rejected: GW200220 (though see next)
- Proca-Star strongly rejected: GW190426

GW190521 Parameters (Proca-star merger)

Parameter	q = 1 model	$q \neq 1 \mod el$
Primary mass	$115^{+7}_{-8}~M_{\odot}$	$115^{+7}_{-8}~M_{\odot}$
Secondary mass	$115^{+7}_{-8}~M_{\odot}$	$111^{+7}_{-15}~M_{\odot}$
Total or final mass	$231^{+13}_{-17}~M_{\odot}$	$228^{+17}_{-15}~M_{\odot}$
Final spin	$0.75^{+0.08}_{-0.04}$	$0.75^{+0.08}_{-0.04}$
Inclination $\pi/2 - \iota - \pi/2 $	$0.83^{+0.23}_{-0.47}$ rad	$0.58^{+0.40}_{-0.39}$ rad
Azimuth	$0.65^{+0.86}_{-0.54}$ rad	$0.78^{+1.23}_{-1.20}$ rad
Luminosity distance	571 ⁺³⁴⁸ ₋₁₈₁ Mpc	700 ⁺²⁹² ₋₂₇₉ Mpc
Redshift	$0.12^{+0.05}_{-0.04}$	$0.14^{+0.06}_{-0.05}$
Total or final redshifted mass	$258^{+9}_{-9}~M_{\odot}$	$261^{+10}_{-11}~M_{\odot}$
Bosonic field frequency ω/μ_V	$0.893^{+0.015}_{-0.015}$	$(*)0.905^{+0.012}_{-0.042}$
Boson mass μ_V [×10 ⁻¹³]	$8.72^{+0.73}_{-0.82} \text{ eV}$	$8.59^{+0.58}_{-0.57} \text{ eV}$
Maximal boson star mass	$173^{+19}_{-14}~M_{\odot}$	$175^{+13}_{-11}~M_{\odot}$

LVC (BBH)

 $272^{+26}_{-27}M_{\odot}$ Circular mergers are louder Larger initial mass needed to get same final BH

GW190521 Parameters (Proca-star merger)

Parameter	q = 1 model	$q \neq 1 \mod el$
Primary mass	$115^{+7}_{-8}~M_{\odot}$	$115^{+7}_{-8}~M_{\odot}$
Secondary mass	$115^{+7}_{-8}~M_{\odot}$	$111^{+7}_{-15}~M_{\odot}$
Total or final mass	$231^{+13}_{-17}~M_{\odot}$	$228^{+17}_{-15}~M_{\odot}$
Final spin	$0.75^{+0.08}_{-0.04}$	$0.75^{+0.08}_{-0.04}$
Inclination $\pi/2 - \iota - \pi/2 $	$0.83^{+0.23}_{-0.47}$ rad	$0.58^{+0.40}_{-0.39}$ rad
Azimuth	$0.65^{+0.86}_{-0.54}$ rad	$0.78^{+1.23}_{-1.20}$ rad
Luminosity distance	571 ⁺³⁴⁸ ₋₁₈₁ Mpc	700^{+292}_{-279} Mpc
Redshift	$0.12^{+0.05}_{-0.04}$	$0.14^{+0.06}_{-0.05}$
Total or final redshifted mass	$258^{+9}_{-9}~M_{\odot}$	$261^{+10}_{-11}~M_{\odot}$
Bosonic field frequency ω/μ_V	$0.893^{+0.015}_{-0.015}$	$(*)0.905^{+0.012}_{-0.042}$
Boson mass μ_V [×10 ⁻¹³]	$8.72^{+0.73}_{-0.82} \text{ eV}$	$8.59^{+0.58}_{-0.57} \text{ eV}$
Maximal boson star mass	$173^{+19}_{-14}~M_{\odot}$	$175^{+13}_{-11}~M_{\odot}$
	0.02	0.57

LVC (BBH)

 $5300^{+2600}_{-2400} Mpc$ Much closer than a BBH

 $272^{+26}_{-27}M_{\odot}$ Circular mergers are louder Larger initial mass needed to get same final BH

GW190521 Parameters (Proca-star merger)

Parameter	q = 1 model	$q \neq 1 \mod el$
Primary mass	$115^{+7}_{-8}~M_{\odot}$	$115^{+7}_{-8}~M_{\odot}$
Secondary mass	$115^{+7}_{-8}~M_{\odot}$	$111^{+7}_{-15}~M_{\odot}$
Total or final mass	$231^{+13}_{-17}~M_{\odot}$	$228^{+17}_{-15}~M_{\odot}$
Final spin	$0.75^{+0.08}_{-0.04}$	$0.75^{+0.08}_{-0.04}$
Inclination $\pi/2 - \iota - \pi/2 $	$0.83^{+0.23}_{-0.47}$ rad	$0.58^{+0.40}_{-0.39}$ rad
Azimuth	$0.65^{+0.86}_{-0.54}$ rad	$0.78^{+1.23}_{-1.20}$ rad
Luminosity distance	571 ⁺³⁴⁸ ₋₁₈₁ Mpc	700 ⁺²⁹² ₋₂₇₉ Mpc
Redshift	$0.12^{+0.05}_{-0.04}$	$0.14^{+0.06}_{-0.05}$
Total or final redshifted mass	$258^{+9}_{-9}~M_{\odot}$	$261^{+10}_{-11}~M_{\odot}$
Bosonic field frequency ω/μ_V	$0.893^{+0.015}_{-0.015}$	$(*)0.905^{+0.012}_{-0.042}$
Boson mass μ_V [×10 ⁻¹³]	$8.72^{+0.73}_{-0.82} \text{ eV}$	8.59 ^{+0.58} _{-0.57} eV
Maximal boson star mass	$173^{+19}_{-14}~M_{\odot}$	$175^{+13}_{-11}~M_{\odot}$

LVC (BBH)

 $150^{+29}_{-17} M_{\odot}$ Much heavier than the BBH estimation

 $5300^{+2600}_{-2400}Mpc$ Much closer than a BBH

 $272^{+26}_{-27}M_{\odot}$ Circular mergers are louder Larger initial mass needed to get same final BH

Event	GW190521	GW190426	GW200220	S200114f
$\mathcal{B}_{\mathrm{BBH}}^{\mathrm{Proca}}$	2.5	2.0×10^{-4}	0.05	3.7

$$p(\{d_i\}|\zeta) = \prod_{i=1}^{N} p(d_i|\text{PSM})\zeta + p(d_i|\text{BBH})(1-\zeta)$$
$$\propto \prod_{i=1}^{N} \mathcal{B}_{\text{BBH}}^{\text{PSM}}\zeta + (1-\zeta),$$

Event	GW190521	GW190426	GW200220	S200114f
$\mathcal{B}_{\mathrm{BBH}}^{\mathrm{Proca}}$	2.5	2.0×10^{-4}	0.05	3.7

$$p(\{d_i\}|\zeta) = \prod_{i=1}^{N} p(d_i|\text{PSM})\zeta + p(d_i|\text{BBH})(1-\zeta)$$

$$\propto \prod_{i=1}^{N} \mathcal{B}_{\text{BBH}}^{\text{PSM}}\zeta + (1-\zeta),$$

Figure out ζ

Event	GW190521	GW190426	GW200220	S200114f
$\mathcal{B}_{\mathrm{BBH}}^{\mathrm{Proca}}$	2.5	2.0×10^{-4}	0.05	3.7

$$p(\{d_i\}|\zeta) = \prod_{i=1}^{N} p(d_i|\text{PSM})\zeta + p(d_i|\text{BBH})(1-\zeta)$$

$$\propto \prod_{i=1}^{N} \mathcal{B}_{\text{BBH}}^{\text{PSM}}\zeta + (1-\zeta),$$

- Obtain **posterior distribution** for ζ
 - **Ignore** s200114f:
 - Only one event prefers PSM, population peaks at zero
 - Removing loudness bias: peaks at ~0.3

$$p(\{d_i\}|\zeta) = \prod_{i=1}^{N} p(d_i|\text{PSM})\zeta + p(d_i|\text{BBH})(1-\zeta)$$
$$\propto \prod_{i=1}^{N} \mathcal{B}_{\text{BBH}}^{\text{PSM}}\zeta + (1-\zeta),$$

- Obtain **posterior distribution** for ζ
 - **Ignore** s200114f:
 - Only one event prefers PSM, population peaks at zero
 - Removing loudness bias: peaks at ~0.3
 - Include s200114f:
 - Preference for PSM increases population fraction

- Can we exploit mass-consistencies? If so, one less parameter
 - Smaller Occam penalty for PSM model
 - Raise evidence for PSM vs. BBH model

- Can we exploit mass-consistencies? If so, one less parameter
 - Smaller Occam penalty for PSM model
 - Raise evidence for PSM vs. BBH model
- Proposal: use the posterior for GW190521 (most significant event) as our prior
 - New PSM-evidence for each individual event:

GW190521 posterior

Original event posterior

Mass-Overlap integral (Ashton+ 20)

$$\mathcal{Z}_{i}^{*} = \mathcal{Z}_{i} \int p^{\text{GW190521}}(\mu_{\text{B}}) \frac{p(\mu_{\text{B}})}{\pi(\mu_{\text{B}})} \, d\mu_{\text{B}} = \mathcal{I}_{\mu_{\text{B}}}^{\text{GW190521},i} \mathcal{Z}_{\mu_{\text{B}}}$$

Original evidence

Original prior

- Can we exploit mass-consistencies? If so, one less parameter
 - Smaller Occam penalty for PSM model
 - Raise evidence for PSM vs. BBH model
- Proposal: use the posterior for GW190521 (most significant event) as our prior
 - New PSM-evidence for each individual event:

GW190521 posterior Original event posterior

Mass-Overlap integral (Ashton+ 20)

$$\mathcal{Z}_{i}^{*} = \mathcal{Z}_{i} \int p^{\text{GW190521}}(\mu_{\text{B}}) \frac{p(\mu_{\text{B}})}{\pi(\mu_{\text{B}})} \, \mathrm{d}\mu_{\text{B}} = \mathcal{I}_{\mu_{\text{B}}}^{\text{GW190521},i} \mathcal{Z}_{\mu_{\text{B}}}$$

Original evidence

Original prior

GW190521 + GW200220: $\mathcal{I} = 5.5$

GW190521 + GW190426: $\mathcal{I} = 3.1$

GW190521 + S200114f: $\mathcal{I} = 0.1$

- Consistent mass across all events except 200114f
 - Pushes PSM evidence
 - Pop. Fraction peaks away from zero
- Inconsistent mass for s200114f:
 - Penalises s200114f
 - Not much difference between including and including it
- **Also:** evidence for GW190521 "artificially" increased due to using its posterior as its own prior
 - Just a proof-of-concept study to exploit massconsistencies

• Next step (working on it): more agnostic approach. Sample over population fraction(s) and boson mass(es)

Some LIGO-Virgo detections are challenging to interpret as black-hole mergers

Boson (Proca)-stars are one of the simplest black-hole mimickers

Ultralight bosons are good candidates to form dark matter

- Catalog of boson-star simulations available (restricted to head-on mergers)
- Analysed GW190521: consistent with boson-star merger + boson mass estimate
 First systematic comparison of LIGO-Virgo events to beyond BH models
- Will analyse future events: exploit boson-mass consistencies
- Targeted searches

- Proca field is complex: there is a phase $\phi(t)$ characterising the star
 - Relative phase $\ \Delta\phi(t)=\phi_1(t)-\phi_2(t)$ controls how stars interact, specially at merger
 - In all previous cases $\ \Delta\phi(t=0)=0$
 - However $\Delta\phi(t_{merger})$ varies across our catalog

- Proca field is complex: there is a phase $\phi(t)$ characterising the star
 - Relative phase $\ \Delta\phi(t)=\phi_1(t)-\phi_2(t)$ controls how stars interact, specially at merger
 - In all previous cases $\ \Delta\phi(t=0)=0$
 - However $\Delta\phi(t_{merger})$ varies across our catalog

- Proca field is complex: there is a phase $\phi(t)$ characterising the star
 - Relative phase $\Delta\phi(t)=\phi_1(t)-\phi_2(t)$ controls how stars interact, specially at merger
 - In all previous cases $\ \Delta\phi(t=0)=0$
 - However $\Delta\phi(t_{merger})$ varies across our catalog

- Perform simulations for varying $\Delta\phi(t_{initial})$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

- Perform simulations for varying $\Delta\phi(t_{initial})$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

- Perform simulations for varying $\Delta\phi(t_{initial})$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

- Perform simulations for varying $\Delta\phi(t_{initial})$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

- Perform simulations for varying $\Delta\phi(t_{initial})$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

- ullet Perform simulations for varying $\Delta\phi(t_{initial})$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

Preference for null phase difference: "no wave-nature" evidence

- ullet Perform simulations for varying $\Delta \overline{\phi(t_{initial})}$
 - Ideally, do this for all of our initial catalog
 - For now: 12 selected cases
 - Working on a ~3000 simulation catalog
 - Bayesian inference on GW190521

Preference for null phase difference: "no wave-nature" evidence

