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Inspiral

Typical black-hole merger signal
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Masses In the Stellar Graveyard
LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars




GW190521

—~wiff

 Barely any (visible) pre-merger emission

Livingston
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’WW\W What produced GW190521?

e Remnant:; intermediate-mass black hole.

' No
- IMBH
" remnant

60 80 100 120
my[(Mg ]

LVC 2020
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What produced GW1905217

Orbital angular momentum

\ilt
\

I3

Spin magnitude y <1 (cosmic censorship)

: : : Orientation (or tilt)
 Mild precession signature

‘ 3
posterior probability per pixel

P(precession|qBBH) 10 : 1




What produced GW1905217

e |f BBH: primary black hole in the
pair instability supernova gap.

120




What produced GW1905217

e |f BBH: primary black hole in the
pair instability supernova gap.

e |f BBH: primary black hole in the
pair instability supernova gap.

120




Boson stars, Proca stars and ultralight bosons

—~~wilf

Self-gravitating Bose Einstein condensates of ultralight bosons
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Boson stars, Proca stars and ultralight bosons
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Compact objects with no event horizon (black hole mimickers)
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Boson stars, Proca stars and ultralight bosons

—~~wilf

Compact objects with no event horizon (black hole mimickers)

 Can have spins larger than 1!!!

e Can produce highly spinning remnant black holes!

EIEIE WHAT YOUR BRAIN DOES TO CREATE REALITY

Why people think How to beat How to teach
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Boson stars, Proca stars and ultralight bosons
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Boson stars, Proca stars and ultralight bosons

EIEI[E WHAT YOUR BRAIN DOES TO CREATE REALITY

Why people think How to beat How to teach

THEY CAN HEAR THE DEAD COVID-19 BY 2022 A MACHINE TO TELL A STORY

Two “new physics” parameters

e Oscillation frequency of the field: w/ /v

Determines the “compactness” of the star
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Boson stars, Proca stars and ultralight bosons

EIEI[E WHAT YOUR BRAIN DOES TO CREATE REALITY

Why people think How to beat How to teach
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Boson stars, Proca stars and ultralight bosons
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Ultra-light bosons

Scalar (s=0) Vector (Proca) (s=1) Tensor (s=2)
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solutions

R 1 | KX | *® X

Unstable

Q : Form unstable cloud around black-holes. SR instability. System spins-down, Continous waves. Current mass constraints.

‘ : Form stable cloud around black-holes. SR equilibrium, spin of the system is kept. No Continous waves.

»

Yan?
Quasi-circular M Only available for non-spinning stars
)

v

Mergers:

B

\ / a N \/ \J
Head-on <.> —> — <‘> .
Y - A Spinning Scalar star

(Unstable)




Boson stars, Proca stars and ultralight bosons
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Inspiral Ringdown Final

* Black Hole

I
!

— Numerical relativity
Reconstructed (template)




Boson stars, Proca stars and ultralight bosons

o Ringdown

b"

_H

1. Two Boson-stars 2. Hypermassive Boson Star 3. Perturbed Black Hole 4. Final
Black Hole

Characteristic Hypermassive-star Emission

<

Case1l: Long-
lived hyper
massive star

Direct Collapse to Black Hole,
(No Characteristic Emission)

Case 2: Short-

lived hyper
massive star Zoomed Ringdown

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time[seconds]




Building a catalogue of Proca-star mergers

Equal-mass, equal field frequency (equal spin)

Initial separation = 100M
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Is GW190521 a Proca-star merger?
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Parameter inference

LIGO Livingston

0.70 0.75
+1.2662147860 x 10°




Parameter inference

LIGO Livingston

0.70 0.75
+1.2662147860 x 10°




Parameter inference

LIGO Livingston

0.70 0.75
+1.2662147860 x 10°




Parameter inference

LIGO Livingston

0.70 0.75
+1.2662147860 x 10°




Parameter inference

Proca-Star

0.70 0.75
+1.2662147860 x 10°




Going beyond the Wall...

—~wiff

* Analyse events beyond G\W190521

e GW200220 Part of the GWTC-3 catalogue (Lvk 2021)

Low significance (<1/year) L1GO Livingstor

BBH estimate: 200Msun

0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725
ts] +1.2403408200 x 107




Going beyond the Wall...

—~wiff

* Analyse events beyond G\W190521

Part of the GWTC-3 catalogue (Lvk 2021)

e GW190426 Low significance (<1/year)

LIGO Livingston
Heaviest merger to date

0.50 0.55 0.60 0.65 0.70 0.75
ts] +1.2662147860 x 10°




Going beyond the Wall...

* Analyse events beyond G\W190521

Not published as an event but as a loud trigger (Abbott+ 2022)

Significance much larger than other two events (1/30 year)

LIGO Livingston

e S5200114f Extremely challenging for our
waveform models

Not ruled out as a gravitational-wave
detection

0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350
ts] +1.2630029160 x 10°




Results: Looking at the data

Best-fit waveforms (GW190521)

LIGO Hanford | | LIGO Livingston

0375 0400 0425 0450 0475 0.500 0.525 0.550 0375 0400 0425 0450 0475 0.500 0.525 0.550 0375 0400 0425 0450 0475 0.500 0.525 0.550
t[s] +1.2424429670 x 10° t[s] +1.2424429670 x 10° t[s] +1.2424429670 x 10°

y-




Proca-star or Black-hole merger?

GW190521 GW190426 GW200220 S200114f

* Proca-Star mildly favoured: GW190521, S200114f
* Proca-Star mildly rejected: GW200220 (though see next)
GW190426




el

Results

GW190521 Parameters (Proca-star merger)

Parameter

Primary mass

Secondary mass

Total or final mass

Final spin

Inclination z/2 — |1 — z/2]
Azimuth

Luminosity distance
Redshift

Total or final redshifted mass
Bosonic field frequency w/uy
Boson mass uy [x10713]

Maximal boson star mass

g = 1 model
1151 M,
1157 M,
23115 M,

0.75 504

0.83792 rad

0.65795¢ rad

5711750 Mpc
U 2% on
25815 M
0893331
8.7210.72 eV
17311, M,

g # 1 model
1157 Mg
1111 M,
228111 Mg
0.75 504
0.587 55 rad
0.78115 rad
700155 Mpc
0.14179¢
261177 M
()0.905% 504
8.591)3% eV
17515 M

LVC (BBH)

26

Circular mergers are louder

Larger initial mass needed to get same final BH

i ——



el

Results

GW190521 Parameters (Proca-star merger)

Parameter

Primary mass

Secondary mass

Total or final mass

Final spin

Inclination z/2 — |1 — z/2]
Azimuth

Luminosity distance
Redshift

Total or final redshifted mass
Bosonic field frequency w/uy
Boson mass uy [x10713]

Maximal boson star mass

g = 1 model
1151 M,
1157 M,
23115 M,

R

0.83792 rad

0.65795¢ rad

5711757 Mpc
0.1298
2581 M
0.893100)
8.7210.72 eV
17311, M,

g # 1 model
1157 Mg
1111 M,
228111 Mg

Ry

0.587 55 rad

0.78115 rad

7001555 Mpc

0.141092

261119 M

()0.905 554

8.597527 eV
17515 M

LVC (BBH)

53007

272720

2600
2400 M pc

M

Much closer than a BBH

Circular mergers are louder

Larger initial mass needed to get same final BH

i ——



el

Results

GW190521 Parameters (Proca-star merger)

Parameter

Primary mass

Secondary mass

Total or final mass

Final spin

Inclination z/2 — |t — z/2|
Azimuth

Luminosity distance
Redshift

Total or final redshifted mass

Bosonic field frequency w/uy

Boson mass uy [x10713]

Maximal boson star mass

g = 1 model
1151 M,
1157 M,
231t= M

el

0.83792 rad

0.65105° rad

571153 Mpc

0.12:08;
2581 M
0.89370013

8.7210.72 eV

17311, M,

g # 1 model
1155 M,
1111 M
228" M,
R ERp
0.5873 rad
0.78115 rad
70015 Mpc
0.1419%%
261119 M
()0.905100,3
8.597527 eV
17515 M

LVC (BBH)

1501

53007

272720

- M

2600
2400 M pc

M

Much closer than a BBH

Circular mergers are louder

Much heavier than the BBH estimation

Larger initial mass needed to get same final BH

.{Wme,WM____



Boson masses

- GW190521
GW200220
GW190426

-== 5200114f

——  Prior




Population

GW190521 GW190426 GW200220 S200114f




MM/W* Population

* Model: population with given fraction G of Proca-star mergers. -

p(1d:}|¢) = Hp(dz'\PSM)C + p(d;|BBH)(1 — ()

=1

¢+ (1—-¢),

GW190521 GW190426 GW200220 S200114f




M'W\N* Population

* Model: population with given fraction G of Proca-star mergers.

p({d:}I¢) = | | p(d:[PSM)¢ + p(d;|BBH)(1 — ()

1=1

GW190521 GW190426 GW200220 S200114f




Population

~~

* Model: population with given fraction G of Proca-star mergers.

Agnostic ug prior

p({d:}I¢) = [ p(d:IPSM)C + p(di| BBH)(1 — ¢)

Co-moving
Co-moving w/o 14f
—  Uniform
- == Uniform w/o 14f

=1

e Obtain posterior distribution for (

e |gnore s200114f:

 Only one event prefers PSM, population peaks at
Zero ' Uniform distance-prior:

e Removing loudness bias: peaks at ~0.3 . larger preference for PSM




Population

i

* Model: population with given fraction G of Proca-star mergers.

p({d:}I¢) = | | p(d:[PSM)¢ + p(d;|BBH)(1 — () Agnostic ug prior

=1

Co-moving
Co-moving w/o 14f
—  Uniform
- == Uniform w/o 14f

e Obtain posterior distribution for (

e |gnore s200114f:

 Only one event prefers PSM, population peaks at
Zero ' Uniform distance-prior:

e Removing loudness bias: peaks at ~0.3 . larger preference for PSM

0.2 0.4
* Include s200114f:

e Preference for PSM increases
population fraction




WN\W Attempt to exploit mass-coincidence

e Can we exploit mass-consistencies? If so, one less parameter

— GW190521

e Smaller Occam penalty for PSM model | 150426

-== 5200114f

—— prior

e Raise evidence for PSM vs. BBH model




Attempt to exploit mass-coincidence

: use the posterior for GW190521 (most significant
event) as our prior

e New PSM-evidence for each individual event:

GW190521 Original event Mass-Overlap integral
posterior (Ashton+ 20)

posterior

* D 7
Z* Zi/pGW190521(#B) (:MB) dMB :IEB\N19()521, Zz

1

m(uB)

Original Original prior
evidence

— GW190521
GW200220
GW190426

-== 5200114f

—— prior




Attempt to exploit mass-coincidence

: use the posterior for GW190521 (most significant
event) as our prior

e New PSM-evidence for each individual event:

GW190521 Origingl event Mass-Overlap integral
posterior posterior (Ashton+ 20)
GW190521 p(uB) _ ~GW190521,i
i / p (4B) dup =1, Z;
m(pB)
Original Original prior
evidence

— GW190521
GW200220
GW190426

-== 5200114f

—— prior

GW-
GW-

9052°

9052°

+ GW200220: /7 = 5.5
+ GW190426: 7 = 3.1

GW190521 + S200114f: 1 = 0.1

S [T




M'V\/\MF Attempt to exploit mass-coincidence

e Consistent mass across all events except 200114f

GW190521 ug prior

e Pushes PSM evidence

e Pop. Fraction peaks away from zero

e Inconsistent mass for s200114f:

e Penalises s200114f

 Not much difference between including and including it

e Also: evidence for GW190521 “artificially” increased due
to using its posterior as its own prior

e Just a proof-of-concept study to exploit mass-
consistencies

 Next step (working on it): more agnostic approach. Sample over population fraction(s) and boson mass(es)




Some LIGO-Virgo detections are challenging to interpret as black-hole mergers

Boson (Proca)-stars are one of the simplest black-hole mimickers

Ultralight bosons are good candidates toform dark matter

Catalog of boson-star simulations available (restricted to head-on mergers)

Analysed GW190521: consistent with boson-star merger + boson mass estimate

First systematic comparison of LIGO-Virgo events to beyond BH models

Will analyse future events: exploit boson-mass consistencies

Targeted searches

Conclusions




MV\/M' After wave-like properties of boson stars

e Proca field is complex: there is a phase ¢(t) characterising the star
* Relative phase A¢(t) = ¢1(t) — ¢2(t) controls how stars interact, specially at merger
e In all previous cases A@(t =0) =0

e However A@(tmerger) varies across our catalog




After wave-like properties of boson stars

—~wiff

e Proca field is complex: there is a phase ¢(t) characterising the star

* Relative phase A¢(t) = ¢1(t) — ¢2(t) controls how stars interact, specially at merger

e In all previous cases Ap(t =0) =0

e However A@(tmerger) Vvaries across our catalog

0.00010

0.00005

0.00000

-0.00005

-0.00010

-0.00015
80 100

Equal-mass Proca-star merger

120

140

160
t[iM]

180

0.00010

0.00005

0.00000

-0.00005

-0.00010

Unequal-mass Proca-star merger

220




After wave-like properties of boson stars

—~wiff

e Proca field is complex: there is a phase ¢(t) characterising the star

* Relative phase A¢(t) = ¢1(t) — ¢2(t) controls how stars interact, specially at merger

e In all previous cases Ap(t =0) =0

e However A@(tmerger) Vvaries across our catalog

(2,2) mode as function of Ae for g # 1 merger 1e—5 (3,3) mode as function of 6¢ for g=1 case

6r/6
7m/6
8m/6
or/6
—==- 10mn/6
11mn/6




Measuring relative phase for G\WW190521

-

e Perform simulations for varying A¢(tmz‘tz‘al)
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 Working on a ~3000 simulation catalog

e Bayesian inference on GW190521
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Measuring relative phase for G\WW190521

il

e Perform simulations for varying A¢(tz’m‘tz‘al)

e |deally, do this for all of our initial catalog C e R S e

e For now: 12 selected cases &

 \Working on a ~3000 simulation catalog . A , D N 77— v Y
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e Bayesian inference on GW190521 §F O\ N
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Measuring relative phase for G\WW190521

—

e Perform simulations for varying A¢(tz’m‘tz‘al)

e |deally, do this for all of our initial catalog S e

e For now: 12 selected cases B

 Working on a ~3000 simulation catalog
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e Bayesian inference on GW190521 e, \ NS - B A )
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Measuring relative phase for G\WW190521

—

e Perform simulations for varying A¢(tmz‘tz‘al)

e |deally, do this for all of our initial catalog

e For now: 12 selected cases 2
 Working on a ~3000 simulation catalog

e Bayesian inference on GW190521
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Measuring relative phase for G\WW190521

—

e Perform simulations for varying A¢(tz’m'tial)

e |deally, do this for all of our initial catalog

e For now: 12 selected cases 2
e Working on a ~3000 simulation catalog

e Bayesian inference on GW190521
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Measuring relative phase for G\WW190521

—~wiff

e Perform simulations for varying Ad(tinitial)

e |deally, do this for all of our initial catalog

GW190521

e For now: 12 selected cases
 Working on a ~3000 simulation catalog

e Bayesian inference on GW190521




Measuring relative phase for G\WW190521

i

e Perform simulations for varying Ad(tinitial)

e |deally, do this for all of our initial catalog

GW190521
e For now: 12 selected cases

e Working on a ~3000 simulation catalog A P(A¢ = 0)

~ 9

 Bayesian inference on GW190521 0 P(A§b 7& O)




