

Stability Criteria in f(R) Gravity from Thermodynamics Analogy

César Peralta¹ Sergio Jorás²

Universidad Antonio Nariño¹ Universidade Federal do Rio de Janeiro²

August 25, 2022

In this work we analyze the stability criteria in f(R) theories of gravity in the **metric formalism** under the approach of a thermodynamics analogy.

We starting in the Einstein frame using ϕ^2 and double well inflationary potentials, and obtain a parametric form of f(R) in the corresponding Jordan frame. Such approach yields plenty of new pieces of information, namely a self-terminating inflationary solution with a linear Lagrangian, and a robust criterion for stability of such theories.

Switching frames: From Jordan to Einstein Frame

Jordan
$$S_{met} = \frac{1}{2k} \int_V d^4 x \, \mathbf{f}(\mathbf{R}) \, \sqrt{-g},$$

We can rewrite the function f(R) using a Legendre transformation

$$\hat{L}(g,p) \equiv \sqrt{-g} \left(p R(g) - H(p) \right). \tag{1}$$

Now, replacing p by the new auxiliary field $\phi(p)$ defined by $p = e^{\beta\phi}$ and using a conformal transformation

Einstein
$$\hat{L} = \sqrt{-\hat{g}} \left(\hat{R} - \hat{g}^{\mu\nu}\phi_{,\mu}\phi_{,\nu} - 2V(\phi) \right),$$
 (2)

$$\therefore \quad V(\phi) \equiv \frac{1}{2p^2} \Big\{ p(\phi) R[p(\phi)] - f[R(p(\phi))] \Big\}, \tag{3}$$

Parametric set for the f(R) function that depends completely on the potential $V_E(\phi)$.¹

$$egin{aligned} f(\phi) &= \mathrm{e}^{2eta\,\phi} \left[2V_E(\phi) + 2eta^{-1} rac{dV_E(\phi)}{d\phi}
ight] \ R(\phi) &= \mathrm{e}^{eta\,\phi} \left[4V_E(\phi) + 2eta^{-1} rac{dV_E(\phi)}{d\phi}
ight] \end{aligned}$$

¹Guido Magnano and Leszek M. Sokolowski. Phys. Rev.D50 (1994), pp. 5039–5059. arXiv:gr-qc/9312008 [gr-qc].[1]

We choose the inflationary quadratic potential to include a shift in the ϕ -vacuum value and a cosmological constant

$$V_{sqm}(\phi) = \frac{1}{2} m_{\phi}^2 \left(\phi - a\right)^2 + \Lambda, \tag{4}$$

We solved the full equation system of movement for the scalar field in an universe with a Friedmann-Lemaître-Robertson-Walker metric, with initial conditions set from the analytic slow-roll, namely:

$$\phi_{sqm}(0) \approx a - 15.5 M_P, \quad \dot{\phi}_{sqm}(0) = \sqrt{\frac{2}{3}} m_{\phi} \approx 0.81 m_{\phi}.$$
 (5)

Numerical solutions

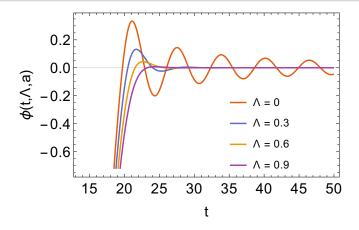
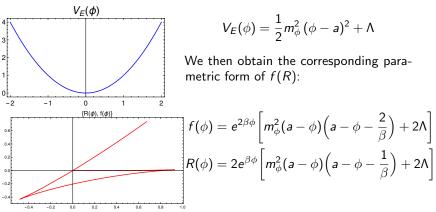
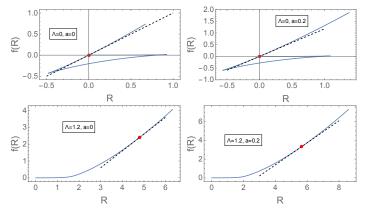


Figure: Numerical solutions potential (4), with N = 60 efolds and a = 0, using $m_{\phi} = 1$ and $M_P = 1$. Note that the curves are smoothed as Λ increases. Also, the curves shift up if a > 0 or shift down if a < 0.

The Inverse Problem: From Einstein to Jordan frame



So, substituting the quadratic potential



If $\Lambda < \Lambda_c$ (to be defined later on), the curve features a 3-branch structure. In particular, on the final branch, one recovers GR only if $f' = \exp(\beta a) = 1$, i.e., if a = 0. Regardless of a, the system does reach a de Sitter state, the Lagrangian in Jordan frame can be written as the linear function $f(R) = \exp(\beta a)R - 2\Lambda_J$.

Thermodynamics Interpretation

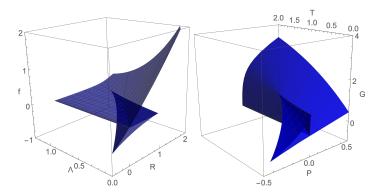


Figure: Plots of $f(R, \Lambda)$, and G(P, T), given by Eqs. (7) and (8) with $\beta = \sqrt{2/3}$ and a = 0.

For now, let us associate the Cosmological Constant Λ to an effective temperature $T \equiv \Lambda$. We define a new pair of coordinates $\{-G, P\}$ as a rotation of the original one $\{f, R\}$:

$$\begin{pmatrix} -G \\ P \end{pmatrix} \equiv \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} f \\ R \end{pmatrix}.$$
(6)

In order to define the exact correspondence, $\theta \equiv \pi/2$

$$G = 2e^{\beta\phi} \left(\beta^{-1}(\phi - a) + (\phi - a)^2 + 2T\right) = R$$
(7)

$$P = e^{2\beta\phi} \left(2\beta^{-1} (\phi - a) + (\phi - a)^2 + 2T \right) = f$$
 (8)

The effective volume V is the variable "canonically conjugated" to the effective pressure P, i.e, since

$$dG(P,T) = V \cdot dP - S \cdot dT, \qquad (9)$$

one can define an effective volume

$$V \equiv \left. \frac{\partial G}{\partial P} \right|_{T} = \left. \frac{\partial G/\partial \phi}{\partial P/\partial \phi} \right|_{T} = \exp(-\beta\phi) \tag{10}$$

which can be inverted and yield

$$\phi = -\frac{1}{\beta}\log(V). \tag{11}$$

Equations (8) and (11) yield the equation of state for our vdW-like "efective gas", i.e, an expression that relates P, V and T:

$$P = \frac{\beta (a^2 \beta - 2a + 2\beta T) + (2a\beta - 2 + \log V) \log V}{\beta^2 V^2}.$$
 (12)

Here one obtains $P \propto TV^{-2}$ in the high-temperature limit, instead of the standard ideal-gas behavior $P \propto TV^{-1}$.

We can define the **binodal** and **spinodal** curves, that indicate, respectively, the regions of **metastability** and **instability** of the system — see Fig. 13. The *critical point* $\{P_c, T_c, V_c\}$, defined at the crossing of those curves, indicates the end of the coexistence line.

P(V)

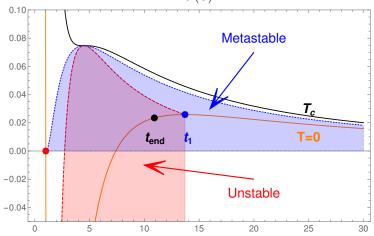
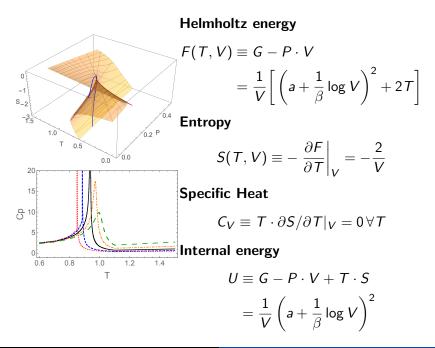


Figure: *P* vs *V*, $T = T_c \equiv 15/16$ (solid thick black). The binodal curve is plotted in dotted blue. The spinodal curve is plotted in dashed red.



vdW fluid

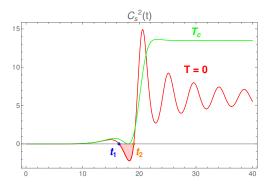


Figure: The sound speed squared: defined as $c_{vdW}^2 \equiv \dot{P}/\dot{\rho} = -(V^2/\kappa)\dot{P}/\dot{V}$ (where we define $\kappa > 0$ by $\rho =: \kappa/V$). We can see that $c_{vdW}^2 < 0$ only in the second branch, when f'' < 0, as expected from the usual *perturbative* argument on stability of f(R) theories. Obviously, for $T > T_c$, the second branch is suppressed and one obtains $c_{vdW}^2 > 0 \forall t$. With an imaginary sound speed, fluctuations grow exponentially fast, but, during the

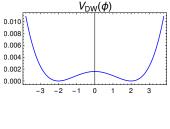
spinodal decomposition process, only a given range of wavelength do so [2]. This is similar to a feature that has already been proposed in the preheating scenario [3].

Now, using a double well potential

$$V_{DW}(\phi) = m^4 (\phi^2 - a^2)^2 + \Lambda$$

We obtain the parametric form of f(R):

$$f(\phi) = 2e^{\beta\phi} \left[\frac{\phi (\phi^2 - a^2)}{2500\beta} + 2\left(\frac{(\phi^2 - a^2)^2}{10000} + \Lambda \right) \right]^{-1}$$
$$R(\phi) = 2e^{2\beta\phi} \left[\frac{\phi (\phi^2 - a^2)}{2500\beta} + 2\left(\frac{(\phi^2 - a^2)^2}{10000} + \Lambda \right) \right]^{-1}$$



$$P = \frac{2}{V^2} \left[\left(a^2 - \frac{\log^2(V)}{\beta^2} \right)^2 + \frac{4a^2\beta^2 \log(V) - 4\log^3(V)}{\beta^4} + T \right].$$

Double Well Potential

We identifying two cases:

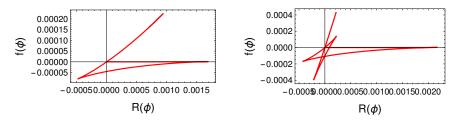
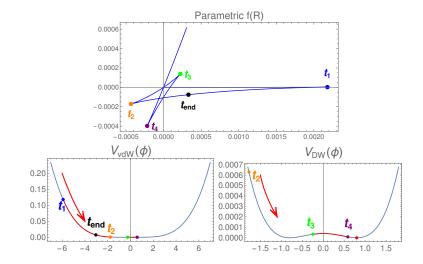


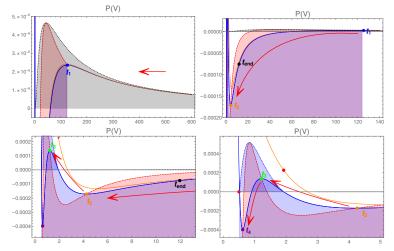
Figure: For $a < a_c \approx -0.81$

Figure: For $a_c < a < 0$

Double Well Potential: Jordan vs Einstein Frame

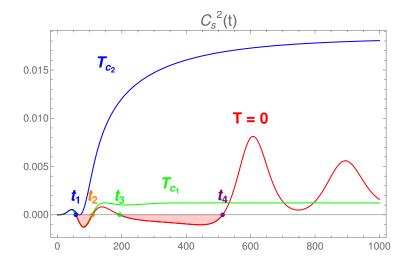


Double Well Potential: Binodal and Spinodal curves



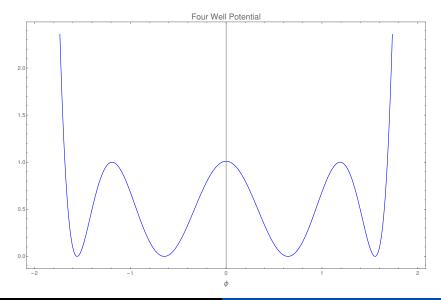
Two binodal curves (in Black-dashed) and a Spinodal curve (in red dashed).

Double Well Potential: Sound Velocity Square



C.D. Peralta, S.E. Jorás Stability Criteria in f(R) Gravity

Four Well Potential:



 $((\phi^2 - b^2)^2 - a^2)$

C.D. Peralta, S.E. Jorás Stability Criteria in f(R) Gravity

We provide this beautiful analogy that presents a great wealth of details, tools and very interesting interpretations.

Advantages

- Perhaps for every potential V_E in Einstein frame there is an analogous thermodynamic system in the Jordan frame.
- There is a huge family of scalar potentials to be explored.
- We can determine regions of metastability that in the Jordan frame are not easy to obtain.
- We can get a description of the phase transitions of the gravitational system by their thermodynamic counterparts.
- Instabilities are not bad (as long as it is temporary!).

Disadvantages

• We still do not know the equivalent gravitational meaning of all thermodynamic quantities.

- We are currently investigating the spinodal decomposition process, for the toy model, in order to obtain the corresponding range of wavelength that is exponentially amplified.
- Growth of curvature perturbations of this models.
- Couple Curvature-Matter

- Guido Magnano and Leszek M. Sokolowski. "On physical equivalence between nonlinear gravity theories and a general relativistic selfgravitating scalar field". In: *Phys. Rev.* D50 (1994), pp. 5039–5059. DOI: 10.1103/PhysRevD.50.5039. arXiv: gr-qc/9312008 [gr-qc].
- [2] Philippe Chomaz, Maria Colonna, and Jørgen Randrup. "Nuclear spinodal fragmentation". In: Physics Reports 389.5 (2004), pp. 263-440. ISSN: 0370-1573. DOI: https://doi.org/ 10.1016/j.physrep.2003.09.006. URL: http://www. sciencedirect.com/science/article/pii/S0370157303003934
- [3] Rouzbeh Allahverdi et al. "Reheating in Inflationary Cosmology: Theory and Applications". In: *Annual Review of Nuclear and Particle Science* 60.1 (2010), pp. 27–51.