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Synopsis

In this work we analyze the stability criteria in f (R) theories of gravity
in the metric formalism under the approach of a thermodynamics
analogy.
We starting in the Einstein frame using ϕ2 and double well in-
flationary potentials, and obtain a parametric form of f (R) in the
corresponding Jordan frame. Such approach yields plenty of new
pieces of information, namely a self-terminating inflationary solution
with a linear Lagrangian, and a robust criterion for stability of such
theories.
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Switching frames: From Jordan to Einstein Frame

Jordan Smet =
1

2k

∫
V
d4x f(R)

√
−g ,

We can rewrite the function f (R) using a Legendre transformation

L̂(g , p) ≡
√
−g (p R(g)− H(p)) . (1)

Now, replacing p by the new auxiliary field ϕ(p) defined by p = eβϕ

and using a conformal transformation

Einstein L̂ =
√
−ĝ

(
R̂ − ĝµνϕ,µϕ,ν − 2V (ϕ)

)
, (2)

∴ V (ϕ) ≡ 1

2p2

{
p(ϕ)R[p(ϕ)]− f [R(p(ϕ))]

}
, (3)
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The Inverse Problem: From Einstein to Jordan frame

Parametric set for the f (R) function that depends completely on the

potential VE (ϕ).
1

f (ϕ) = e2β ϕ

[
2VE (ϕ) + 2β−1dVE (ϕ)

dϕ

]
R(ϕ) = eβ ϕ

[
4VE (ϕ) + 2β−1dVE (ϕ)

dϕ

]

1
Guido Magnano and Leszek M. Sokolowski. Phys. Rev.D50 (1994), pp. 5039–5059. arXiv:gr-qc/9312008

[gr-qc].[1]
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Toy model: ϕ2 Potential

We choose the inflationary quadratic potential to include a shift in the
ϕ-vacuum value and a cosmological constant

Vsqm(ϕ) =
1

2
m2

ϕ (ϕ− a)2 + Λ, (4)

We solved the full equation system of movement for the scalar field in an
universe with a Friedmann-Lemâıtre-Robertson-Walker metric, with initial
conditions set from the analytic slow-roll, namely:

ϕsqm(0) ≈ a− 15.5MP , ϕ̇sqm(0) =

√
2

3
mϕ ≈ 0.81mϕ. (5)
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Numerical solutions
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Figure: Numerical solutions potential (4), with N = 60 efolds and a = 0,
using mϕ = 1 and MP = 1. Note that the curves are smoothed as Λ
increases. Also, the curves shift up if a > 0 or shift down if a < 0.
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The Inverse Problem: From Einstein to Jordan frame
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So, substituting the quadratic potential

VE (ϕ) =
1

2
m2

ϕ (ϕ− a)2 + Λ

We then obtain the corresponding para-
metric form of f (R):

f (ϕ) = e2βϕ
[
m2

ϕ(a− ϕ)
(
a− ϕ− 2

β

)
+ 2Λ

]
R(ϕ) = 2eβϕ

[
m2

ϕ(a− ϕ)
(
a− ϕ− 1

β

)
+ 2Λ

]
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If Λ < Λc (to be defined later on), the curve features a 3-branch structure.
In particular, on the final branch, one recovers GR only if f ′ = exp(βa) = 1,
i.e, if a = 0. Regardless of a, the system does reach a de Sitter state,
the Lagrangian in Jordan frame can be written as the linear function
f (R) = exp(βa)R − 2ΛJ .
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Thermodynamics Interpretation

Figure: Plots of f (R,Λ), and G (P,T ), given by Eqs. (7) and (8) with
β =

√
2/3 and a = 0.
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The Stability Criteria from Thermodynamics Analogy

For now, let us associate the Cosmological Constant Λ to an effective
temperature T ≡ Λ. We define a new pair of coordinates {−G ,P}
as a rotation of the original one {f ,R}:(

−G
P

)
≡

(
cos θ − sin θ
sin θ cos θ

)(
f
R

)
. (6)

In order to define the exact correspondence, θ ≡ π/2

G = 2eβϕ
(
β−1(ϕ− a) + (ϕ− a)2 + 2T

)
= R (7)

P = e2βϕ
(
2β−1(ϕ− a) + (ϕ− a)2 + 2T

)
= f (8)
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The effective volume V is the variable “canonically conjugated” to
the effective pressure P, i.e, since

dG (P,T ) = V · dP − S · dT , (9)

one can define an effective volume

V ≡ ∂G

∂P

∣∣∣∣
T

=
∂G/∂ϕ

∂P/∂ϕ

∣∣∣∣
T

= exp(−βϕ) (10)

which can be inverted and yield

ϕ = − 1

β
log(V ). (11)
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Equations (8) and (11) yield the equation of state for our vdW-like
“efective gas”, i.e, an expression that relates P, V and T :

P =
β (a2β − 2a + 2βT ) + (2aβ − 2 + logV ) logV

β2V 2
. (12)

Here one obtains P ∝ TV−2 in the high-temperature limit, instead
of the standard ideal-gas behavior P ∝ TV−1.

We can define the binodal and spinodal curves, that indicate, re-
spectively, the regions of metastability and instability of the system
— see Fig. 13. The critical point {Pc ,Tc ,Vc}, defined at the crossing
of those curves, indicates the end of the coexistence line.
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Figure: P vs V , T = Tc ≡ 15/16 (solid thick black). The binodal curve is plotted in
dotted blue. The spinodal curve is plotted in dashed red.
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F (T ,V ) ≡ G − P · V

=
1

V

[(
a+

1

β
logV

)2

+ 2T

]
Entropy

S(T ,V ) ≡ − ∂F

∂T

∣∣∣∣
V

= − 2

V

Specific Heat

CV ≡ T · ∂S/∂T |V = 0∀T

Internal energy

U ≡ G − P · V + T · S

=
1

V

(
a+

1

β
logV

)2
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Figure: The sound speed squared: defined as c2vdW ≡ Ṗ/ρ̇ = −(V 2/κ)Ṗ/V̇ (where

we define κ > 0 by ρ =: κ/V ). We can see that c2vdW < 0 only in the second branch,
when f ′′ < 0, as expected from the usual perturbative argument on stability of f (R)
theories. Obviously, for T > Tc , the second branch is suppressed and one obtains
c2vdW > 0 ∀t.
With an imaginary sound speed, fluctuations grow exponentially fast, but, during the
spinodal decomposition process, only a given range of wavelength do so [2]. This is
similar to a feature that has already been proposed in the preheating scenario [3].
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Double Well Potential
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Now, using a double well potential

VDW (ϕ) = m4 (ϕ2 − a2)2 + Λ

We obtain the parametric form of f (R):

f (ϕ) = 2eβϕ
[
ϕ
(
ϕ2 − a2

)
2500β

+ 2

((
ϕ2 − a2

)2
10000

+ Λ

)]

R(ϕ) = 2e2βϕ
[
ϕ
(
ϕ2 − a2

)
2500β

+ 2

((
ϕ2 − a2

)2
10000

+ Λ

)]

P =
2

V 2

[(
a2 − log2(V )

β2

)2

+
4a2β2 log(V )− 4 log3(V )

β4
+ T

]
.
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Double Well Potential

We identifiying two cases:
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Figure: For a < ac ≈ −0.81
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Figure: For ac < a < 0
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Double Well Potential: Jordan vs Einstein Frame
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Double Well Potential: Binodal and Spinodal curves
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Two binodal curves (in Black-dashed) and a Spinodal curve (in red dashed).
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Double Well Potential: Sound Velocity Square
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Four Well Potential:
((

ϕ2 − b2
)2 − a2

)2

+ Λ
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Conclusions

We provide this beautiful analogy that presents a great wealth of
details, tools and very interesting interpretations.
Advantages

Perhaps for every potential VE in Einstein frame there is an
analogous thermodynamic system in the Jordan frame.

There is a huge family of scalar potentials to be explored.

We can determine regions of metastability that in the Jordan
frame are not easy to obtain.

We can get a description of the phase transitions of the
gravitational system by their thermodynamic counterparts.

Instabilities are not bad (as long as it is temporary!).
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Conclusions

Disadvantages

We still do not know the equivalent gravitational meaning of all
thermodynamic quantities.
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Outlooks

We are currently investigating the spinodal decomposition
process, for the toy model, in order to obtain the corresponding
range of wavelength that is exponentially amplified.

Growth of curvature perturbations of this models.

Couple Curvature-Matter
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