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Dawn of GW astronomy
• GWs from compact binary merger have been detected.

– GW becomes a new tool for extrac2ng the astronomical
informa2on.

• The next candidate must be supernova explosion.
– GW asteroseismology
– universal rela2on
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Next candidate of GW sources
• core-collapse supernovae

– compered to the binary merger, the system is more spherically symmetric
• less energy of gravitational waves

– many numerical simulations show the existence of GW signals 
– to understand the physics behind GW signals, we adopt a perturbative approach, 

i.e., asteroseismology

2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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difference in two approaches
• computational domain

– Model I : only inside RPNS defined by ρs

– Model II : up to Rshock

• Boundary condition for solving the eigenvalue problem
– Model I : Δp = 0 @r = RPNS

– Model II : δξr = 0 @r = Rshock

– mathematically, problem to solve is completely different
– for the both models, the BC is a kind of assumption (not exact one)

• advantage
– Model I : matter motion is relatively small

mode classification is as usual
– Model II : boundary is uniquely determined

• disadvantage
– Model I : uncertainty in choice of ρs

– Model II : matter motion may not be negligible outside RPNS
mode classifications is different from the standard one. 
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avoided crossing in GW frequency
(Sotani&Takiwaki 20b)

• one can observe the phenomena of avoided crossing between the eigenmodes.
• the f- & g1-modes frequencies are almost independent from the selection of ρs

(Morozova+ 18; HS, Takiwaki 20b).
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ! 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ! 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + $($+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ! 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ! 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ! 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
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[
W 2 + $($+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ! 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ! 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ! 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + $($+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ! 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Comment on uncertainty
in ρs for Model I

• in the late phase after core bounce, e.g., ~ 500ms, f-mode freq. becomes almost 
independent of the choice of ρs (Morozova+18)

• we also confirm this feature, i.e., f- & g1-modes in later phase are almost  
independent of ρs, where g1-mode decreases with time (Sotani & Takiwaki 20b).

22/8/25 COSMO22@Rio de Janeiro

At the same time, the frequency of the fundamental mode in
Figure 6 is almost insensitive to the position of the outer
boundary, and the low-order g-modes depend weakly on it.

Importantly, this shows that the dominant GW frequency is not
just proportional to the Brunt–Väisälä frequency at the surface
of the PNS, as was suggested in earlier work. Indeed, Figure 4
shows that the three black lines corresponding to the different
outer boundary locations pass through very different values of
the Brunt–Väisälä frequency. The fact that the fundamental
quadrupolar eigenfrequency in Figure 6 is nearly independent
of the position of the outer boundary tells us that the dominant
frequency of the GW signal is defined by the entire structure of
the PNS, rather than by its surface characteristics alone.
The left panel of Figure 7 illustrates the time evolution of the

radial eigenfunction ηr for the l=2 modes associated with
the dominant frequency of the GW signal. The eigenfunctions
are normalized to 1 and plotted as a function of radial
coordinate from the innermost grid point up to the location of
the outer boundary. In Figure 7, they are shifted along the y-
axis according to the time after bounce at which they are
calculated (the time is indicated on the left side of the panel and
directed downward). As we already mentioned, starting from
∼400 ms after bounce and until the end of the simulation, the
main signal is represented by the f-mode, which has the largest
amplitude at the PNS boundary surface and gradually decreases
toward the center. Before that, in the time interval between
∼200 and ∼400 ms, this mode is smoothly connected to a g-
mode having two radial nodes (see also the left panel of
Figure 5). The right panel of Figure 7 shows the energy density
� defined as (Torres-Forné et al. 2018)

�
s
p
r h

h
= + + ^

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )l l

r8
1 19r

2
2

2

2

for the corresponding eigenfunctions of the left panel. The
figure shows that the shape of the fundamental eigenfunction is
very similar in the case of the Cowling approximation (black
lines) and in the case when da ¹ 0 (red lines). The energy
density of the modes shows less agreement. Note that the
definition of � contains the mass density, which is larger in the
inner region than at the the surface of the PNS. Therefore, even
a barely visible disagreement between the eigenfunctions in the

Figure 5. Eigenfrequencies σ/2π of the l=2 modes compared to the GW spectrogram from model M10_SFHo. Each digit represents the number of nodes in the
corresponding mode. The left panel shows the results obtained using the Cowling approximation, while the right panel shows the solution of the full system of
Equations (8)–(11). In the right panel, the dominant feature of the spectrogram is well described by the fundamental (0 radial nodes) mode starting from ∼400 ms after
bounce.

Figure 6. Dependence of the derived eigenfrequencies on the position of the
outer boundary in our analysis. This plot demonstrates that the frequencies of
p-modes are only approximately captured by our calculations. At the same
time, the frequencies of the f-mode and the low-order g-modes are almost
insensitive to the position of the outer boundary, which demonstrates the
robustness of our main result, i.e., the association between the dominant GW
feature and the fundamental ( f ) l=2 PNS mode.
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Table 1. PNS models discussed in this study. For each PNS model, we list the name of PNS model, the progenitor model, EOS, the
dimension of numerical simulation, the position in text where we discuss, and the reference for the linear analysis on each PNS model.

label progenitor model EOS dimension corresponding portion linear analysis

LS220-2D 2.9M!a LS220d 2Dh Sec. 3 this study
LS220-1D 1Dh Appendix B this study
SFHx-3D 15M!b SFHxe 3Di Sec. 3 Sotani et al. (2017, 2019)
TGTF-2D 20M!c TGTFf 2Dj Appendix A Sotani & Takiwaki (2020)
DD2-2D 20M!c DD2g 2Dj Appendix A Sotani & Takiwaki (2020)

aMoriya et al. (2019), bWoosley & Weaver (1995), cWoosley & Heger (2007).
dLattimer & Swesty (1991), eSteiner, Hempel, & Fischer (2013), fTogashi et al. (2017), gTypel et al. (2010).
hTakiwaki (2020a), iKuroda, Kotake, & Takiwaki (2016), jTakiwaki (2020b).
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Figure 2. Comparing the f -, pi-, and gi-mode frequencies for i = 1 up to 5 on the PNS models with ρs = 1011 g/cm3 to those with
ρs = 1010 g/cm3, where the open marks with dotted lines correspond to the results with ρs = 1011 g/cm3, while the filled marks with
dashed lines are the results with ρs = 1010 g/cm3.

3 GRAVITATIONAL WAVE SIGNALS FROM PNS

On the PNS models obtained via 2D simulation, we make a linear analysis. For this purpose, as in Sotani & Takiwaki (2016);

Sotani et al. (2019); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020), we simply adopt the relativistic Cowling approx-

imation in this study, where the metric perturbation is neglected during the fluid oscillations. In this case, the perturbation

equations can be derived by linearizing the energy-momentum conservation law. In addition, one has to impose appropriate

boundary conditions at the stellar center and the outer boundary, i.e., the PNS surface. The concrete perturbation equations

and the boundary conditions are the same as in Sotani et al. (2019). Then, the problem to solve becomes an eigenvalue

problem with respect to the eigenvalue, ω, with which the eigenfrequency, f , is determined via f = ω/(2π). As the standard

standard asteroseismology, the eigenmodes are identified by counting the nodal numbers in the eigenfunctions, i.e., the nodal

numbers of f -, pressure (pi-), and gi-modes are 0, i, and i, respectively. With respect to some of eigenmodes (especially pi-

and gi-modes with lower i and f -mode) in early phase after core bounce, the nodal numbers become more than their definition

because the additional nodes appear in the vicinity of the stellar center. Even in such a case, the nodal numbers for the pi-

and gi-modes with higher i, e.g., i>∼ 3, are the same as the definition. So, even for the eigenmodes whose nodal numbers are

more than their definition, we simply classify them as usual by using the pi- and gi-modes with higher i.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb " 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at " 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

c© 0000 RAS, MNRAS 000, 000–000

doHed：1011 g/cm3

dashed：1010 g/cm3
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pulsation energy density

• f- & g1-modes are not 
dominant @PNS surface
à f- & g1-modes weakly 

depend on ρs

• gi-modes related to fBV
• g1-mode is strongly 

associated with BV freq. 
@r=8km, which 
decreases with \me
à decrease of g1-mode

22/8/25 COSMO22@Rio de Janeiro
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ! 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

Next, we consider to identify the ramp up signals of gravitational waves in numerical data. Using the numerical data

obtained via hydrodynamical simulations, as in Murphy, Ott, & Burrows (2009), the dimensionless characteristic gravitational

wave strain is given by

hchar(f, Tpb) =

√
2G

π2c3D2

dEGW

df
, (4)

where D denotes the source distance, while dEGW/df denotes the time-integrated energy spectra of gravitational wave calcu-

lated with a short-time Fourier transform, S̃(f, Tpb), via

dEGW

df
(f, Tpb) =

3G
5c2

(2πf)2 |S̃(f, Tpb)|, (5)

mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019).
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + $($+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb " 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 1. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

1 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ! 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ! 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + $($+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ! 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ! 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 2. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

2 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019). On the
other hand, since the region, where the Brunt-Väisälä frequency becomes negative, i.e., convectively unstable, is very limited in this
study, the g-mode oscillations are stably excited. Thus, whether or not the g-mode oscillations can be excited strongly depends on the
strength of convection and the width of the convectively unstable region.
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb # 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M")
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M")
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M"/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line
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Figure 6. In the left-hand panel, frequencies of the f- and g1-modes are shown as a function of the square root of the PNS average density, where the thick
solid and the thick dotted lines are the fitting formula given by equations (7) and (8). In the right-hand panel, frequencies of the f- and g1-modes are shown as a
function of the surface gravity of the PNS, where the thick-solid line denote the fitting formula given by equation (9).

Figure 7. Characteristic gravitational wave frequencies extracted by the time–frequency analysis (Kawahara et al. 2018) from the general relativistic 3D
numerical simulation with SFHx (Kuroda et al. 2016) in the left-hand panel. The characteristic gravitational frequencies speculated with the avoided crossing,
using the result shown in the left-hand panel, in the right-hand panel.

correspondence mentioned here is just a speculation, but it would
be confirmed in the future via more complicated analysis, e.g. with
which one can distinguish the left and right-hand panels in Fig. 7.

4 C O N C L U S I O N S

In order to understand the ramp up signals of gravitational waves
appearing in the numerical simulations, we made a linear perturbation
analysis by solving the eigenvalue problem on the PNS models,
which are produced by the 2D numerical simulation with 2.9M!
He star as a progenitor model and with LS220 EOS. We found that
the ramp up signals corresponds well to the g1-mode in the early
phase and to the f-mode after avoided crossing between the f- and
g1-modes of the PNS model. The results are basically consistent with
the previous work (Morozova et al. 2018; Sotani & Sumiyoshi 2019;
Sotani & Takiwaki 2020; Torres-Forné et al. 2019a). In addition,
we successfully found the fitting formula for the g1- and f-mode
frequencies, which correspond to the ramp up signals, as a function
of the PNS average density. Thus, assuming that the ramp up signals
shown in numerical simulations are a principal gravitational wave
signal after supernova explosion, one can observationally extract the
time evolution of the PNS average density via the direct observation
of the gravitational waves using the fitting formula we found in this
study. This is an important information for constraining the EOS
for a high-density region. We also confirmed that the f- and g1-
mode frequencies are almost independent of the selection of the PNS
surface density in the later phase, i.e. after ∼0.3 s after core bounce,
although the eigenfrequencies of the PNSs generally depend strongly

on the selection of the surface density. Furthermore, we pointed out
the possibility that the avoided crossing may appear even in the
previous numerical simulations.

In the end, we have to mention a defect in this study. First, in
this study, we simply adopt the relativistic Cowling approximation.
But, for cold neutron stars, it is known that the eigenfrequencies
calculated with the Cowling approximation can deviate from those
with full perturbations (without the approximation), e.g. the f-mode
frequency has as large as ∼ 20 per cent error (Yoshida & Kojima
1997), although one can qualitatively discuss the behaviour of
the eigenfrequencies. Secondly, the numerical simulations, whose
gravitational wave signals are compared to the frequencies obtained
by linear analysis, have been done in Newtonian gravity with the
phenomenological general relativistic effect. That is, the gravitational
wave signals appearing in the numerical simulations in general
relativity may deviate from those considered in this study. Anyway,
in order to verify our conclusion in this study, we have to make a
linear analysis with full perturbations and compare the calculated
eigenfrequencies to the gravitational wave signals obtained via
numerical simulation in general relativity. Such a study will be done
in the future.
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which are produced by the 2D numerical simulation with 2.9M!
He star as a progenitor model and with LS220 EOS. We found that
the ramp up signals corresponds well to the g1-mode in the early
phase and to the f-mode after avoided crossing between the f- and
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we successfully found the fitting formula for the g1- and f-mode
frequencies, which correspond to the ramp up signals, as a function
of the PNS average density. Thus, assuming that the ramp up signals
shown in numerical simulations are a principal gravitational wave
signal after supernova explosion, one can observationally extract the
time evolution of the PNS average density via the direct observation
of the gravitational waves using the fitting formula we found in this
study. This is an important information for constraining the EOS
for a high-density region. We also confirmed that the f- and g1-
mode frequencies are almost independent of the selection of the PNS
surface density in the later phase, i.e. after ∼0.3 s after core bounce,
although the eigenfrequencies of the PNSs generally depend strongly

on the selection of the surface density. Furthermore, we pointed out
the possibility that the avoided crossing may appear even in the
previous numerical simulations.

In the end, we have to mention a defect in this study. First, in
this study, we simply adopt the relativistic Cowling approximation.
But, for cold neutron stars, it is known that the eigenfrequencies
calculated with the Cowling approximation can deviate from those
with full perturbations (without the approximation), e.g. the f-mode
frequency has as large as ∼ 20 per cent error (Yoshida & Kojima
1997), although one can qualitatively discuss the behaviour of
the eigenfrequencies. Secondly, the numerical simulations, whose
gravitational wave signals are compared to the frequencies obtained
by linear analysis, have been done in Newtonian gravity with the
phenomenological general relativistic effect. That is, the gravitational
wave signals appearing in the numerical simulations in general
relativity may deviate from those considered in this study. Anyway,
in order to verify our conclusion in this study, we have to make a
linear analysis with full perturbations and compare the calculated
eigenfrequencies to the gravitational wave signals obtained via
numerical simulation in general relativity. Such a study will be done
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2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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FIG. 3: Comparing the gravitational wave signals appearing in the numerical simulation (background contour) to the PNS frequencies (open-
marks) determined by solving the eigenvalue problem for the PNS model with TGLD.
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FIG. 4: The f - and g1-mode frequencies for various PNS models are shown as a function of the postbounce time.

in Ref. [19]. In this study, we focus on only the ! = 2 oscillation modes, because they are considered to become energetically
dominant in the gravitational wave emission.

In Fig. 3 we show the PNS oscillation frequencies determined by solving the eigenvalue problem with open marks on the
contour, which denotes the gravitational wave signals appearing in the numerical simulation, for the PNS model with TGLD
(see in appendix A for the other PNS models), focusing on only the f -, gi-, and pi-mode frequencies. Here, the gravitational
wave signals are calculated with the same procedure as in Ref. [65], using the numerical data obtained by simulations. From
this figure, as in Ref. [20], one can obviously see that the gravitational wave signals in numerical simulation is identified by the
g1-mode (f -mode) oscillation from the PNS before (after) the avoided crossing between the f - and g1-mode. In Fig. 4, we also
plot the time evolution of the f - and g1-mode frequencies for various PNS models. As in Ref. [17], one can observe that the
time evolution of the gravitational waves strongly depends on the PNSs models (see also Fig. 8).

On the other hand, in the left panel of Fig. 5, we show the f - and g1-mode frequencies as a function of the square root of the
PNS average density, x. From this figure, the f - and g1-mode frequencies according to the gravitational wave signals appearing
in the numerical simulation are well fitted, such as

f (kHz) = −1.410− 0.443 ln(x) + 9.337x− 6.714x2, (3)

independently of the PNS models. The predicted values from Eq. (3) are also plotted in the left panel of Fig. 5 with the thick-
solid line. That is, once one would detect the supernova gravitational waves, which could be the same as gravitational wave
signals appearing in the numerical simulations, one can extract the evolution of the PNS average density by using Eq. (3). In the
same figure, we also show the empirical relation for the f -mode frequency derived in Ref. [42], which is

ff (kHz) = 0.9733− 2.7171x+ 13.7809x2, (4)

with the thick-dashed line. We remark that this relation is obtained for the case of the failed supernova with general relativistic
simulation, i.e., the PNS considered in Ref. [42] would eventually collapse to a black hole. By comparing this empirical relation
to the gravitational wave frequencies obtained in this study and the fitting formula given by Eq. (3), one can observe a significant



still systematical deviation

• GW signal in simula\on deviates from
the eigenfrequency ~ 100Hz.
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FIG. 9: Comparison between the gravitational wave signals appearing in the numerical simulations (contour) and the PNS specific oscillation
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respectively. The result for the PNS model with LS220 and the 2.9M! progenitor is taken from Ref. [22].
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summary
• we examine the GW freq. from PNSs
• GW signals in numerical simulations correspond to g1- & f-modes

– we find the empirical formula for GW signals
– via the GW observations, one could extract the PNS average density

• For the BH formation, owning to the neutrino observation, one
would determine the average density of PNS with maximum mass by
detecting the f-mode GW.

• Still, there are some open problems;
– systematical deviation between the GW signal and PNS frequencies.
– difference in the universal relation for BH formation and successful SN

• We will take into account
– the effect of the radial velocity as background properties.
– the rotational effects
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