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Introduction

• Gravity in the “strong-field” regime is an experimentally unexplored scenario which

motivates new physical grounds where modifications of General Relativity (GR) may

take place.

• It is well known that within the strong-field regime of gravity, the effects of higher

order curvature operators become more relevant.

• “Spontaneous scalarization” is a distinctive manifestation of gravitational interactions

in the strong-field regime. Compact objects such as neutron stars [DEF model ’70] and

black holes can be scalarized [Silva et al ’18][Doneva, Yazadjiev ’18].

• A theory exhibiting scalarization requires a GR solution with trivial scalar field and a

hairy black hole.

• In Einstein scalar-Gauss-Bonnet (ESGB) gravity, spontaneous scalarization takes place

whenever the mass of a Schwarzschild black hole is below a critical value. In short,

within this regime, the Schwarzchild solution becomes unstable and a new branch of

solutions with a nontrivial scalar field bifurcates from the former.
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• The aim of this talks is:

• To address a scalar-tensor effective field theory (EFT) that exhibits curvature-induced

scalarization, triggered by a set of suitable invariants made up of Riemann tensor, up to

cubic order.

• To investigate within this framework, how the new operators modify a previously claimed

catastrophic instability triggered by quantum fluctuations during the inflationary stage in

ESGB theory.

• To explore the Big Bang Cosmology (BBC) of the model, and check that GR is indeed a

late-time cosmological attractor as experiments seem to demand.
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• For definiteness, we will consider the so-called Einsteinian Cubic Gravity (ECG) theory
[Bueno, Cano ’16], which possesses some basic “healthiness” and attractive properties
such as:

• Having a spectrum identical to that of Einstein gravity, i.e., the metric perturbation (on a

maximally symmetric background) propagates only a transverse massless graviton.

• It is neither topological nor trivial in four dimensions.

• It is defined such that it is independent of the number of dimensions.

• Moreover, ECG admits a spherically symmetric black hole solution [Bueno, Cano ’16]

and a FLRW solution with a “purely geometric” inflationary period [Arcienaga et al ’20].
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The Model and Black Hole Scalarization

• We start by recalling the cubic operator P in ECG theory, which reads

P = 12R ρ σ
µ ν R γ δ

ρ σ R µ ν
γ δ + R ρσ

µν R γδ
ρσ R µν

γδ − 12RµνρσR
µρRνσ + 8Rν

µR
µ
ρR

ρ
ν ,

and the operator C [Hennigar et al ’17] which is given by the combination

C = RµνρσR
µνρ

δR
σδ − 1

4
RµνρσR

µνρσR − 2RµνρσR
µρRνσ +

1

2
RµνR

µνR.

• In order to explore the phenomenon of scalarization we must include a scalar field φ,

while keeping the healthy features of ECG. For simplicity, we impose a φ → −φ

(discrete) symmetry and a φ → φ+ constant (shift) symmetry, where the latter is only

spoiled by gravitational interactions. The action of the theory is then given by

S [gµν , φ] =

∫
d4x

√
−g

[
M2

Pl

2
R +

α

M2
Pl

(P − 8 C)− 1

2
gµν∇µφ∇νφ+ f (φ/MPl) I + · · ·

]
.

[“Scalar-Einsteinian Cubic Gravity” (SECG)]

• Here, f (φ/MPl) is a dimensionless “coupling function” between the canonically

normalized scalar field φ and a set of curvature invariants given by

I = −βM2
PlR + γ G − λ

M2
Pl

(P − 8C) ,

where G is the well-known Gauss-Bonnet operator G ≡ RµναβR
µναβ − 4RµνR

µν + R2.
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• EFT reasoning leads us to expect that the dimensionless coupling constants α, β, γ,

and λ are O(1) numbers.

• We will not set the (reduced) Planck scale MPl = 2.4× 1018 GeV to unity as it is

usually done in the literature since we want to keep track of it to easily emphasize its

role of being the ultimate EFT cut-off of any gravitational system.

• The equations of motion (EOM) that stem from extremizing the action

S [gµν , φ] =
∫
d4x

√
−g L read

Rαβρ
µPνραβ + 2∇α∇βPαµνβ +

1

2
∇µφ∇νφ+

1

2
gµν L = 0,

□φ+ f,φ (φ/MPl) I = 0,

where Pαβµν ≡ ∂L
∂Rαβµν .

• The EOM for the scalar field fluctuation δφ ≡ φ− φ0 is given by[
□+ f,φφ(φ0/MPl) I

]
δφ = 0,

where φ0 is the scalar field background, while the d’Alembertian operator and the

curvature invariant I are computed in a fixed background.
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• We need to demand that f,φ(0) = 0 so that GR vacuum solutions together with φ0 = 0

are admissible solutions of the field equations.

• Moreover, f,φφ(0) > 0 is necessary for the emergence of a tachyonic instability, which

triggers the phase transition.

• Finally, one can show that linearized Einstein field equations in SECG are the same as

in ECG through these scalarization conditions.

• Without loss of generality we then take f (x) = 1
2
x2 + . . ., impliyng a scalar field

fluctuation effective mass squared given by

m2
eff = −f,φφ (φ0/MPl) I = βR − γ

M2
Pl

G +
λ

M4
Pl

(P − 8C) .

• We must recall that we are interested in models that exhibit spontaneous scalarization

around compact objects such as Schwarzschild black holes for which R = 0 and G > 0.

As the cubic operator is further suppressed by the cut-off for natural values of λ, this

implies the condition γ > 0. Hereafter, we will take γ > 0.
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• Perturbations on a fixed Schwarzschild background may be decomposed as

δφ =
u(r)

r
e−iωt Ylm (θ, ϕ).

In tortoise coordinates r∗, the Klein-Gordon equation becomes “Schrödinger-like”,

meaning

d2u

dr 2∗
+ ω2u = Veff(r)u,

where Veff is some effective potential. It can be shown that there exists a sufficient

condition for the existence of an unstable mode given by∫ ∞

rg

dr
Veff(r)(
1− rg

r

) < 0,

where rg ≡ M/4πM2
Pl, and M stands for the black hole mass.

• Such a condition implies that(
M
MPl

)2

∈ [q−, q+] if 0 < λ ≤ 48

175
γ2,(

M
MPl

)2

∈ [0, q+] if λ ≤ 0,

where we have defined

q± ≡ 16π2

5

(
12 γ ±

√
144 γ2 − 525λ

)
.
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• We see that a Schwarzschild background is unstable for a specific range of masses

given by the above bounds. Indeed scalarization may only occur whenever

λ ≤ 48

175
γ2,

which is a non-trivial constraint between otherwise completely independent Wilson

coefficients of the EFT. Note that this constraint is still compatible with both γ and λ

being O(1) numbers. However, the sign of λ is not fixed by this condition.

• As it stands, the theory predicts that the maximum mass of Schwarzschild black holes

that may become scalarized is

MMAX ∼ 10−37M⊙,

precluding any possibility of such a version of SECG theory to be compared with

observations. We will have more to say about this soon enough.

• Let us now consider how scalarization may occur within a cosmological setting.
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Perturbations on a FLRW Background

• In a FLRW background with metric

ds2 = gµν dx
µdxν = −dt2 + a(t)2δij dx

idx j , and H ≡ ȧ

a
,

it so happens that the EOM for the fluctuation reads

δφ̈+ 3Hδφ̇− ∇2δφ

a2
+m2

eff δφ = 0,

which, by Fourier expanding δφ ∼
∫
dω d3k δφ(ω, k) e−i(ωt−k·x), implies that

ω2 =
k2

a2
+m2

eff,

when neglecting the slow change of ω on the time scales shorter than H−1.

• Moreover, for a FLRW spacetime

R = 6
(
2H2 + Ḣ

)
, G = 24H2

(
H2 + Ḣ

)
, P − 8C = −48H4

(
2H2 + 3Ḣ

)
.

• In the ESGB theory (β = λ = 0) we get

m2
eff = −24 γ

M2
Pl

H2
(
H2 + Ḣ

)
= −24 γ

M2
Pl

H2 ä

a
,

recalling that we are always taking γ > 0.
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• Then m2
eff < 0 ⇐⇒ ä > 0 implying the existence of a tachyonic instability during any

(quasi)-de Sitter (dS) phase of our universe.

• In the general case using the standard definition ϵ ≡ −Ḣ/H2 we may write

m2
eff = 12

[
β
(
1− ϵ

2

)
− 2 γ (1− ϵ) ζ − 8λ

(
1− 3

2
ϵ

)
ζ2
]
H2,

as an expansion in the (very) small ratio ζ ≡
(

H
MPl

)2

.

• Therefore during inflation, a tachyonic instability for which m2
eff < 0, ζ ∼ 10−11, and

ϵ ≪ 1, will take place whenever

• β ̸= 0, γ = 0, λ = 0 =⇒ β < 0

• β ̸= 0, γ ̸= 0, λ = 0 =⇒
β

γ
≲ O(10−11)

• β ̸= 0, γ = 0, λ ̸= 0 =⇒
β

λ
≲ O(10−22)

• In short, our EFT approach to the theory which assigns natural values for all the

coupling constants, univocally demands β < 0 for the tachyonic instability to take

place within a cosmological setting.
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• Within the “ESGB limit”, one can show that the possibility of scalarizing astrophysical

compact objects introduces a hierarchy problem since γ ∼ 1074. Sweeping this fact

under the rug for a second, we may estimate the ratio of the instability time tinst to the

age of the universe t0 ∼ 1/H0 (H0 ≃ 10−43 GeV) obtaining

tinst
t0

∼ H0

meff
∼ 1

2
√
6 γ

MPl

H0
∼ 1023.

Therefore, we may conclude that the instability is not noticeable during current dark

energy domination.

• On the other hand, during inflation the estimation delivers

tinst
tinf

∼ 1

N

Hinf

meff
∼ 1

2
√
6 γN

MPl

Hinf
∼ 10−34,

where N ∼ 102 is the required number of e-folds to overcome the classical

shortcomings of BBC. One may then be tempted to conclude that inflation is not

compatible with the phenomenon of black hole scalarization.

• However, we argue that there is just no reason for setting β = 0 from an EFT point of

view, invalidating such a hazy claim.
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• In order to cure the the highly unnatural value for γ we need to introduce a new scale

M within the coupling sector operators.

• One can then show that scalarization of astrophysical black holes with characteristic

length scale L ≡ M−1 ∼ 10 km, implies

M = 1.98× 10−20 GeV ⇒ γ ∼ 10−2,

which is a much more sensible number than the one we had before.

• We see that the introduction of the new energy scale M “naturalizes” an otherwise

finely tuned EFT. Moreover, such a scale is actually related to the physical extent of

the compact object to be scalarized.

• Furthermore, it is possible to show that the maximum mass of Schwarzschikd black

holes that may become scalarized grows into

MMAX ∼ 180M⊙,

which are clearly way better news for observational prospects.
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• However, the ratio between the instability time tinst to the age of the universe t0 is now

given by

tinst
t0

∼ H0

meff
∼ 1√

12 |β|
∼ 0.29√

|β|
.

• Moreover, in the case of inflation, with N ∼ 102, the relevant ratio now goes like

tinst
tinf

∼ 1

N

Hinf

meff
∼ 1√

12 |β|N
∼ 2.9× 10−3√

|β|
.

• In short, the above means that the tachyonic instability will arise during both the

inflationary period and during dark energy domination.

• The only way out to this problem which preserves the expected hierarchy in the set of

curvature operators, admits black hole scalarization of astrophysical black holes, and is

compatible with standard big bang cosmology (BBC) is to impose β > 0, γ > 0 with

β ∼ γ ∼ λ ∼ O(1).

• Let us finally address how well this model fits within BBC.
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General Relativity as a Cosmic Attractor

• The scalar EOM in a FLRW background is given by

φ̈+ 3Hφ̇+m2
eff φ = 0 where m2

eff = βR − γ

M2
G +

λ

M4
(P − 8C)

while the “t-t” Einstein equation reads

M2
PlGtt = ρeff + ρa,

with

ρeff ≡ ρPC + ρφ, ρPC = −48α

M2
Pl

H6,

ρφ =
1

2
φ̇2 + 6

(
β − 4 γ χ− 24λχ2

)
Hφφ̇+ 3

(
β + 8λχ2

)
H2φ2, and χ ≡ (H/M)2.

• We shall demand usual cosmic evolution, i.e.

ρa ≈ 3M2
PlH

2,

with ρa = {ρr, ρm, ρde}, implying that |ρPC| ≪ ρa, or equivalently α ≪ (MPl/H)4,

which is always trivially fulfilled.

• Since we do not want φ to play any role in late-time cosmology, we shall assume that

ρφ ≪ ρa.

We acknowledge that it is mandatory to check if such an assumption is dynamically

consistent.
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• In order to solve the scalar field EOM and to analize the dynamical evolution of its

energy density during BBC, it is useful to trade cosmic time t by the redshift z .

• The numerical analysis is set to start at zi = 1010, right before big bang

nucleosynthesis (BBN) epoch. A natural initial value for the dimensionless field

φ̃ ≡ φ/
√
2MPl is given by φ̃i =

φi√
2MPl

≃ H√
2MPl

≪ 1.

• In Figure 1 below we show the evolution of both the dimensionless scalar field φ/φi

and the dimensionless ratio ρφ/ρa for z < zi for different values of β and fixed values

of γ and λ.

Figure 1: Top panel: Effective energy density ρφ relative to the energy density of the cosmic

fluid ρa. Bottom panel: Scalar field value relative to its initial value fixed at zi = 1010. The

values of the coupling constants are taken to be γ = 1 and λ = 48/175.
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• As previously noted, the contributions from higher-order curvature terms do become

relevant during the very early stage of the universe. We may explicitly observe this, for

high redshift z > zi , in Figure 2 below.

Figure 2: Relative effective density and scalar field value for high redshift. The values of the

coupling constants are the same as those of Figure 1.
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Comments

• We confirm that the solution is strongly consistent with our initial assumption, since

ρφ(z) ≪ ρa(z) for the whole range of numerical integration which goes from z = 0 to

z = 1012.

• The scalar field φ is basically a constant throughout most of such a range, with the

exception of cosmological “phase transitions” redshifts and very early and late times.

• During early times (high redshift) m2
eff dominates over Hubble friction within the scalar

field equation. However, as we “move” forward in time, m2
eff decays much faster than

the Hubble friction which rapidly takes over, so it is expected that the scalar field

freezes to a constant way before entering matter domination (MD) era.

• For even higher redshift values the relative scalar field and the relative energy density

oscillate with ever increasing frequency as can be seen in Figure 2.
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• During radiation domination (RD) the scalar field is completely insensitive to the value

of β as the Ricci scalar identically vanishes, while the relative density does marginally

depend on such a constant even though all the curves, for high enough z , eventually

converge.

• On the other hand, by the time the MD era begins, the Ricci scalar stops being trivial,

and in fact it entirely determines the relative scalar and energy density evolution

because the higher-order operators become irrelevant considering that χ ∼ 10−36 ≪ 1

for z = 3600.

• Importantly, we do observe that the strict β = 0 case is actually problematic.

• Within this context, the effective Newton constant becomes Geff ≡ G/
(
1− 2β φ̃2

)
with φ̃ ≡ φ/

√
2MPl, which is a negligible correction to the GR value.

• As it was expected, the scalar field profile in SECG exhibits a manifest deviation from

its quadratic counterpart for very high cosmological redshifts, as can be appreciated in

the two following figures.
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Figure 3: The continuous and dashed curves represent the profile stemming from ESGB and SECG,

respectively.
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Some More Comments

• ESGB and SECG theories depart when applied to a compact object of size L = 10 km.,

around z ≈ 3.7× 1011 (RD), when the size of the universe was ∼ 4 km.

• Clearly, such a redshift value marks the “breakdown” of the EFT expansion (EFTBD),

in the sense that perturbativity is lost and we should not trust the naive model

anymore.

• Any behavior of the system beyond the EFTBD point should not be taken seriously as

it does not represent sensible perturbative physics because the system becomes

strongly-coupled.

• New non-trivial physics in the form of an ultraviolet (UV) completion is required.

• This implies that the bigger the scale M, the further back in time the EFT is

appropriate to describe the phenomenon of scalarization within a cosmological setting.
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Ending remarks

• We have followed the principles of EFT in order to address the issue of black hole

scalarization and its compatibility with standard cosmic evolution in higher-order

theories of gravity, using what we have dubbed “scalar-Einstenian Cubic Gravity” as a

well-motivated, healthy toy model.

• By using “naturalness” arguments, a “foreign” new scale in the problem was

introduced, which is actually associated with the physical extension of the would-be

scalarized compact object.

• After the introduction of such a scale, the scalarization bound was increased from

10−37M⊙ to 180M⊙ in the ESGB limit.

• Unlike ESGB, scalarization in SECG scenario is restricted by an upper bound of the

curvature at the event horizon.
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• We have confirmed the fact that the relative signs of the dimensionless parameters of

the model play a crucial role within the process of spacetime scalarization as they

actually determine whether or not scalarized solutions may emerge from dynamics.

• From an EFT perspective picking the right sign for φ2R operator in the theory is

enough to render inflation safe from the tachyonic instability while still scalarizing

compact objects through the irrelevant operator φ2G, hence scalarization remains

compatible with the inflationary paradigm.

• We integrated the scalar field equation to find that, under very sensible assumptions for

the initial conditions of the system, the theory admits GR as a cosmological attractor.

• Departures from GR do become significant for high enough redshift
(
z ∼ 1011

)
, way

before BBN.

Muito Obrigado!
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