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where the s is a place holder denoting either the ISW
or SZ contribution.

B. SZ Trispectrum

In addition to the lensing contributions to the trispec-
trum above, we consider contributions from the inverse
Compton scattering of the CMB photons. The SZ con-
tribution to the trispectrum is given by [17, 25]:

TΘ
ij = g4ν

∫ zmax

0

dz
dV

dz

∫ Mmax

Mmin

dM
dn(M, z)

dM

× |ỹi(M, z)|2 |ỹj(M, z)|2 , (8)

where gν is the spectral function of the SZ effect,
V (z) is the comoving volume of the universe integrated
to a redshift of zmax = 4, M is the virial mass such
that [log10(Mmin), log10(Mmax)] = [11, 16], dn/dM is the

FIG. 1: The impact of varying the lensing scaling parameter
on the lensed CMB temperature power spectrum, for AL =
[0,2,5,10].

mass function of dark matter halos as rendered by [18]
utilizing the linear transfer function of [19], and ỹ is the
dimensionless two-dimensional Fourier transform of the
projected Compton y-parameter, given via the Limber
approximation [20] by:

ỹl =
4πrs
l2s

∫ ∞

0

dxx2y3D(x)
sin(lx/ls)

lx/ls
, (9)

where the scaled radius x = r/rs and ls = dA/rs such
that dA is the angular diameter distance and rs is the
scale radius of the three-dimensional radial profile y3D
of the Compton y-parameter. This profile is a function
of the gas density and temperature profiles as modeled
in [21]. Hence, we incorporate the contributions obtained
from the SZ effect along with those from lensing, lensing-
ISW, and lensing-SZ effects to the covariance matrix in
Eqn. 3.

C. The Weak Lensing Scaling Parameter AL

To first order in φ, the weak lensing of the CMB
anisotropy trispectrum can be expressed as the con-
volution of the power spectrum of the unlensed tem-
perature Cl and that of the weak lensing potential
Clφφ [15, 22, 23]. The magnitude of the lensing poten-
tial power spectrum can be parameterized by the scaling
parameter AL, defined as

Cφφ
l → ALC

φφ
l . (10)

Thus, AL is a measure of the degree to which the ex-
pected amount of lensing appears in the CMB, such that
a theory with AL = 0 is devoid of lensing, while AL = 1
renders a theory with the canonical amount of lensing.
Any inconsistency with unity represents an unexpected
amount of lensing that needs to be explained with new
physics, such as dark energy or modified gravity [15, 24].
The impact of this scaling parameter on the lensed CMB
temperature power spectrum can be seen in Fig. 1. Qual-
itatively, AL smoothes out the peaks in the power spec-
trum and can therefore also be viewed as a smoothing
parameter in addition to its scaling property. Given that
AL primarily affects the temperature power spectrum on
small angular scales, we also explore the possibility that
it deviates from unity as secondary non-Gaussianities are
accounted for in the analysis.
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Fig. 6. Top: the lensed temperature power spectrum (solid) and the unlensed spectrum (dotted),
compared to the large l asymptotic result of Eq. (4.16) (dashed). Bottom: the fractional change in
the power spectrum due to lensing. Both plots are for a typical concordance ΛCDM model.
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The remaining integral is generally small, and the lensed spectrum only deviates from scale
invariant at the O(10−3) level. If there were no lensing power at l > l0, scale invariance would
be preserved on scales l > l0: a large-scale lensing mode magnifies and demagnifies small-
scale structures, which has no effect if the structures are scale invariant. Lensing of the CMB
is important because the acoustic oscillations and small scale damping give a well defined
non-scale-invariant structure to the power spectrum.
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this
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Fig. 3. CMB lensing-potential power spectrum, as measured by
Planck (see PL2018 for a detailed description of this measure-
ment). Orange points show the full range of scales reconstructed
with a logarithmic binning, while grey bands show the error and
multipole range of the conservative band powers used for the
likelihood, with black points showing the average multipole of
the band weight. The solid line shows the best ⇤CDM fit to the
conservative points alone, and the dot-dashed line shows the pre-
diction from the best fit to the Planck CMB power spectra alone.
The dashed line shows the prediction from the best fit to the
CMB power spectra when the lensing amplitude AL is also var-
ied (AL = 1.19 for the best-fit model; see Sect. 6.2 for a detailed
discussion of AL).

The lensing e↵ect depends on the propagation of photons on
null geodesics, and hence depends on the background geometry
and Weyl potential (the combination of scalar metric perturba-
tions that determines the Weyl spacetime curvature tensor; see
e.g. Lewis & Challinor (2006)).

We approximate the lensing likelihood as Gaussian in the
estimated band powers, making perturbative corrections for the
small dependence of band powers on the cosmology, as de-
scribed in PL2015. We neglect correlations between the 2-
and 4-point functions, which are negligible at Planck sensitiv-
ity (Schmittfull et al. 2013; Peloton et al. 2017). As in PL2015,
band powers at multipoles L > 400 are less robust than over
8  L  400, with some evidence for a curl-test failure, and pos-
sibly also systematic di↵erences between individual frequencies
that we were unable to resolve. Multipoles at L < 8 are very
sensitive to the large mean-field correction on these scales, and
hence are sensitive to the fidelity of the simulations used to esti-
mate the mean field. As described above, our baseline cosmolog-
ical results therefore conservatively use only the multipole range
8  L  400.

The Planck measurements of C��L are plotted in Fig. 3, where
they are compared to the predicted spectrum from the best-fitting
base-⇤CDM model of Sect. 3, and Fig. 4 shows the correspond-
ing broad redshift ranges that contribute to the lensing band pow-
ers in the ⇤CDM model. Fig. 3 shows that the lensing data are in
excellent agreement with the predictions inferred from the CMB
power spectra in the base-⇤CDM model (�2

e↵ = 8.9 for 9 binned
conservative band-power measurements, �2

e↵ = 14.0 for 14 bins
over the full multipole range; we discuss agreement in exten-
sions to the ⇤CDM model in more detail below). The lensing

Fig. 4. Contributions to the conservative CMB lensing band
powers (see text and Fig. 3) as a function of redshift in
the base-⇤CDM model (evaluated here, and only here, using
the Limber approximation (LoVerde & Afshordi 2008) on all
scales). Multipole ranges of the corresponding band powers are
shown in the legend.

data prefer lensing power spectra that are slightly tilted towards
less power on small scales compared to the best fit to the CMB
power spectra. This small tilt pulls joint constraints a small frac-
tion of an error bar towards parameters that give a lower lensing
amplitude on small scales. Parameter results from the full mul-
tipole range would be a little tighter and largely consistent with
the conservative band powers, although preferring slightly lower
fluctuation amplitudes (see PL2018).

As described in detail in PL2018, the lensing likelihood (in
combination with some weak priors) can alone provide ⇤CDM
parameter constraints that are competitive with current galaxy
lensing and clustering, measuring

�8⌦
0.25
m = 0.589 ± 0.020 (68 %, Planck lensing). (5)

Combined with BAO (see Sect. 5.1 below) and a baryon density
prior to break the main degeneracy between H0,⌦m, and �8 (de-
scribed in PL2015), individual parameters H0, ⌦m, and �8 can
also separately be constrained to a precision of a few percent. We
use ⌦bh2 = 0.0222 ± 0.0005 (motivated by the primordial deu-
terium abundance measurements of Cooke et al. 2018, see also
Sect. 7.6), which gives

H0 = 67.9+1.2
�1.3 km s�1Mpc�1,

�8 = 0.811 ± 0.019,

⌦m = 0.303+0.016
�0.018,

9

>

>

>

>

=

>

>

>

>

;

68 %, lensing+BAO. (6)

The constraints of Eq. (5) and (6) in are in very good agreement
with the estimates derived from the Planck power spectra and are
independent of how the Planck power spectra depend on the cos-
mological model at high multipoles. This is a strong test of the
internal consistency of the Planck data. The Planck lensing con-
straints in Eqs. (5) and (6), and the consistency of these results
with the Planck power spectrum likelihoods, should be borne in
mind when comparing Planck results with other astrophysical
data (e.g., direct measurements of H0 and galaxy shear surveys,
see Sect. 5).
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The constraints of Eq. (5) and (6) in are in very good agreement
with the estimates derived from the Planck power spectra and are
independent of how the Planck power spectra depend on the cos-
mological model at high multipoles. This is a strong test of the
internal consistency of the Planck data. The Planck lensing con-
straints in Eqs. (5) and (6), and the consistency of these results
with the Planck power spectrum likelihoods, should be borne in
mind when comparing Planck results with other astrophysical
data (e.g., direct measurements of H0 and galaxy shear surveys,
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Fig. 23. Constraints on the value of the consistency parameter
AL, as a single-parameter extension to the base-⇤CDM model,
using various combinations of Planck data. When only power
spectrum data are used, AL > 1 is favoured at about 3�, but
including the lensing reconstruction the result is consistent at
2� with AL = 1. The dotted lines show equivalent results for
the CamSpec likelihood, which peak slightly nearer to AL = 1,
indicating some sensitivity of the AL results to choices made in
constructing the high-multipole likelihoods.

be consistent with moderate statistical fluctuations, related to the
low-` dip at large scales and correlated with the lensing ampli-
tude on small scales. The large-scale feature is well determined
by both WMAP and Planck and very robustly measured. The
internal consistency of the Planck power spectra between dif-
ferent frequencies and detectors (PPL15, PPL18) argues against
systematics driving large parameter shifts at high multipoles.
Equation (35) also demonstrates that any e↵ect from the high-
multipole spectra alone cannot be pulling our baseline parame-
ters by more than about 1�. In the next subsection we describe
in more detail the apparent preference for a higher lensing am-
plitude, and the features in the observed spectrum that could be
responsible for it.

6.2. Lensing smoothing and AL

In addition to the direct measurement of CMB lensing described
in Sect. 2.3 and PL2018, lensing can be seen in the Planck CMB
power spectra via the lensing-induced smoothing of the acous-
tic peaks and transfer of power to the damping tail. This e↵ect
is modelled in our main parameter analysis, and can be calcu-
lated accurately from the unlensed CMB power spectra and the
CMB lensing potential power spectrum in each model (Seljak
1996; Lewis & Challinor 2006). Interesting consistency checks
include testing if the amplitude of the smoothing e↵ect in the
CMB power matches expectation and whether the amplitude of
the smoothing is consistent with that measured by the lensing
reconstruction. To do this, the theoretical prediction for the lens-
ing spectrum in each model is often scaled by an “AL” consis-
tency parameter, where the theoretical expectation is that AL = 1
(Calabrese et al. 2008).

As shown in Fig. 3, the Planck lensing-reconstruction power
spectrum is consistent with the amplitude expected for ⇤CDM
models that fit the CMB spectra, so the Planck lensing measure-
ment is compatible with AL = 1. However, the distributions of

Fig. 24. Base-⇤CDM model (AL = 1) TT power spectrum resid-
uals smoothed with a Gaussian kernel of width �` = 40. The
black line shows the smoothed di↵erence between the coadded
data points and the theoretical model for the Planck TT+lowE
best-fit model, while coloured lines show the residuals for sam-
ples over the allowed parameter space coloured by the value
of ⌦mh2. Grey bands show the 1, 2, and 3 � diagonal range
expected for the smoothed residuals in the best-fit model. The
red dashed line shows 10 % of the lensing-smoothing di↵erence
predicted in the best-fit model, displaying the oscillatory sig-
nal expected if there were more lensing of the acoustic peaks.
The data residuals are not particularly anomalous, but the resid-
uals have a similar pattern to the lensing smoothing di↵erence
over the approximate range ` = 1100–2000, giving a preference
for around 10 % more lensing at fixed cosmological parameters.
Allowed models with lower ⌦mh2 (and hence higher H0) pre-
dict less lensing and give a larger oscillatory residual, preferring
relatively more lensing smoothing than models with high matter
density. The black dashed line shows the smoothed residual for
the Planck TT+lowE best fit to ⇤CDM+AL (with AL = 1.19).

AL inferred from the CMB power spectra alone are shown in
Fig. 23 for various di↵erent data combinations, and these indi-
cate a preference for AL > 1, with

AL = 1.243 ± 0.096 (68 %, Planck TT+lowE), (36a)
AL = 1.180 ± 0.065 (68 %, Planck TT,TE,EE+lowE), (36b)

assuming a ⇤CDM+AL model. The TE polarization data alone
slightly prefer AL < 1, with the EE data slightly preferring
AL > 1; however, both are consistent with AL = 1 within 2�.
The joint combined likelihood shifts the value preferred by the
TT data downwards towards AL = 1, but the error also shrinks,
increasing the significance of AL > 1 to 2.8� (99.8 % of pa-
rameter samples have AL > 0, so the one-tailed limit is almost
exactly 3�). Moreover, combining with the lensing likelihood
further pulls the constraint towards AL = 1, which is then con-
sistent with the data to within 2�; we see that the preference for
AL > 1 is driven by the CMB power spectra alone.

The preference for high AL is not just a volume e↵ect in
the full parameter space (see PCP13 for discussion of such ef-
fects in multi-parameter fitting), with the best fit improved by
��2

e↵ = �8.7 when adding AL for TT+lowE and ��2
e↵ = �9.7 for

TT,TE,EE+lowE. The bulk of the ��2
e↵ comes from the high-`
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Two features of this spectrum difference are crucial in our analyses:

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck
TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, cEE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣

cEE
100

⌘

EE fit
= 1.021;

⇣

cEE
143

⌘

EE fit
=

0.966; and
⇣

cEE
217

⌘

EE fit
= 1.040. The CamSpec likelihood, de-

scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E
spectra,

⇣

cEE
100

⌘

TE fit
= 1.04,

⇣

cEE
143

⌘

TE fit
= 1.0, and

⇣

cEE
217

⌘

TE fit
=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-
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1) The data “show” some signature at the angular scales of the 
acoustic peaks where grav. lensing is important (             )!

2) At these scales the data show the lowest errors

CMB spectrum difference:!
Planck APS data minus LCDM best-fit model

Are these data white noise?

` > 1000



Ljung-Box test
The Ljung–Box criterium test the null hypothesis:

H0: The data are independently distributed (i.e. the correlations in the 
population from which the sample is taken are 0, so that any observed 
correlations in the data result from randomness of the sampling process).

Are these spectrum difference data white noise?
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Table 1. The cosmological parameters used to generate the synthetic angular power spectra.

parameters ⌦1⌘
2 ⌦2⌘

2 100\"⇠ =B ln(1010�B) g

⇤CDM 0.022383 0.12011 1.040909 0.96605 3.0448 0.0543

Table 2. Statistical analyses to investigate the rejection or acceptance of the
null hypothesis �0

Multipole intervals p-value Reject �0 % of repetition

✓ = [2, 2500] 0 Yes 100%

✓ = [2, 100] 6.0346 ⇥ 10�1 No 95%

✓ = [2, 800] 1.1739 ⇥ 10�1 No 56%

✓ = [2, 1200] 1.709739 ⇥ 10�2 No 20%

✓ = [1100, 2500] 1.043610 ⇥ 10�14 Yes 100%

✓ = [1600, 2500] 3.70592 ⇥ 10�8 Yes 94%

✓ = [2000, 2500] 1.567727 ⇥ 10�3 Yes 59%

✓ = [1100, 2000] 2.9949 ⇥ 10�5 Yes 77%

✓ = [1100, 2100] 1.3562 ⇥ 10�7 Yes 89%

✓ = [1100, 2200] 2.6334 ⇥ 10�13 Yes 100%

values of ⌘ mentioned in the previous paragraph, and table 2 results
are robust. The first interval analyzed is 2  ;  2500, i.e. all multi-
polar range measured by Planck. In such interval we found a rejection
of null hypothesis �0 with ? = ... < U with a 99% of probability.
Then, we applied the test for three di�erent intervals: 2  ;  100,
2  ;  800 and 2  ;  1200, where it was found a no rejection
of �0. This results are indicating that the CMB power spectrum is
well fitted for the cosmological parameters found by Planck time, and
thus residual {X4G2

✓
} is white noise until, roughly ; ⇠ 1200. We also

considered three more intervals, 1100  ;  2500, 1600  ;  2500
and 2000  ;  2500. Results in such intervals are indicating a
rejection of the �0 at 99%, i.e. {X4G2

✓
} is not white noise and some

signal is still hidden in such multipole intervals. One possibility is
that rejection of �0 would be due to the not so accurate measures,
represented by their huge error bars, to the last multiples (especially
; ⇠ 2200). In order to evaluate this possibility we consider three
more intervals.

In fact, we also consider the statistical analyses in the intervals:
1100  ;  2000, 1100  ;  2100, and 1100  ;  2200,
we confirm the rejection of the null hypothesis �0 at 99%. As we
can see in the table 2, our results show very small ?-values which
is indicating. All this confirms a significant correlation among the
{X4G2

✓
} and supports the hypothesis of the presence of some structure

left in the spectrum di�erence X4G2
✓

, even if one does not consider
the data with large errors for ; > 2200.

So far, we applied the LB test to the exact measurement values,
i.e. without any error bars consideration. Now, let us investigate the
robustness of the results by considering error bars in LB test. For
each multipole ✓ we have {X4G2

✓
± �✓ }, where {�✓ } are the error

associated to the data set {X4G2
✓

}. Now, instead of the data set {X4G2
✓

}
we consider the data set {eX4G2

✓
} ⌘ {X4G2

✓
+ '✓ }, where is '✓ are

randomly selected numbers from a Gaussian distribution with zero
mean and standard deviation fPlanck

✓
for each ✓ multipole. Thus,

each realization shall give us a di�erent set of data {eX4G2
✓

} within the
2f error. We then apply the LB test for 100 di�erent realizations and
count the number of times that result for each interval is repeated.

We show our results in the table (2), where we observe that in most
cases the results repeat almost 100% of times.

As a conclusion of this subsection we must point out that there
exists a strong evidence to rejection of the null hypothesis in the
interval 1100  ✓  2500, where lensing e�ects of CMB photons
are more relevant (Lewis & Challinor 2006). However to be more
conservatives, we can left out last multipoles because of the huge
error bars and focus in analysis in the interval 1100  ✓  2200.

3.3 Measuring the excess of lensing power

The main objective of this work is, first of all, investigate if the
spectrum di�erence X>1B

✓
defined in equation (1), corresponds to

statistical noise data or not. In case of the signal-noise hypothesis
�0 is rejected, as has been shown in the previous subsection for
several intervals with ✓ > 1000, then our second aim is to explore the
possibility that the X>1B

✓
data could be well reproduced through the

j2 best-fit analyses, described in the subsection 3.1, by a synthetic
APS according to the equation (4), X exc

✓
(�!) for some value �! > 0.

As illustrative examples for several �! cases and diverse binnations
schemes�✓, we show some plots of these best-fit analyses in figures 1,
2, and 3. The fact that one can find a good fit, i.e. j2 ' 1, for the
spectrum di�erence X>1B

✓
with a synthetic APS with �! < 0 implies

that the �;4=B parameter in the Planck APS should be indeed larger
than 1, i.e. �;4=B = 1 + �! > 1, meaning that the lensing amplitude
parameter was underestimated in the analyses that determine the
{⇠Planck

✓
} APS, done by the Planck collaboration.

Assuming that the spectrum di�erence X>1B
✓

has the signature of
the lensing phenomenon, as suggested by the plots shown in fig-
ures 1–3, we find the parameter value �! of the synthetic APS that
best-fits these data. In the table 3 we display, as illustrative examples,
the j2 values obtained for di�erent �! values and diverse �✓ bin
lengths. One notice that in several cases, j2 ' 1 is fully possible,
including the �! = 0 case which is a central point in our analyses.
This suggests that a more detailed likelihood analyses are in due.

We start considering the j2 procedure, of the synthetic APS that
best-fits the spectrum di�erence X>1B

✓
, for a continuous set of �! val-

ues. As a result, one obtains a j2 value for each �! considered, that
is, j2 becomes a function of the �! parameter: j2 = j2 (�!), infor-
mation that can be plotted as curves j2 versus �! , as observed in the
figure 4, considering moreover di�erent bin lengths �✓. In the table 4
we show the numerical values of the intersections between the curves
j2 (�!) appearing in figure 4, obtained for di�erent binnations, and
the straight line j2 = 1. According to these results, we conclude that
values �! < 0 exist, which implies that the spectrum di�erence X>1B

✓
can be well fitted by X4G2

✓
(�!) for some �! values and several �✓

choices. Furthermore, we perform statistical likelihood analyses to
find the best-fit �! values, as shown in table 5, also for several bin
lengths. Considering that we have solutions for diverse �✓ cases, for
definiteness the values in the interval �! 2 [0.10, 0.30] includes all
the cases obtained in the maximum likelihood analyses within 1f un-
certainty. Then, our final result can be written as �! = 0.195±0.105.
One can argue that other binnations can provide di�erent �! values,
however observing the behavior of the functions �! = �! (�✓ ) in
figure 4, one can infer that other binnation possibilities should also
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course, other interpretations for X obs
✓

would be possible, as for in-
stance that it is just statistical noise, and for this reason it is interesting
to examine them too.

Our analyses include the production of simulated APS, from now
on termed synthetic APS, which consider the modeling of the weak
lensing phenomenon on CMB photons for cases with �! = 0 (un-
lensed) and �! < 0 (lensed). The details for the production of these
synthetic APS are the following.

• We use the cosmological parameters corresponding to the ob-
served Planck TT APS, as detailed in the table below, to produce syn-
thetic lensed and unlensed ⇤CDM TT APS, ⇠ syn,!

✓
and ⇠

syn,D!
✓

,
respectively, using the numerical code ⇠!�(( (Blas, Lesgourgues
& Tram Blas et al.); we consider the lensing amplitude �! as a
parameter.

• We vary the value of lensing amplitude �! and generate several
synthetic power spectra ⇠

syn,!
✓

= ⇠
syn,!
✓

(�!), for each value of
the �! parameter (we have modified ⇠!�(( (Blas, Lesgourgues &
Tram Blas et al.) to allow the code to consider the lensing amplitude
AL as a parameter).

• The relative error is calculated by considering the error from
the observed Planck TT APS, ±4AA>A (⇠Planck

✓
), and dividing it by

the lensed APS that is being modified by varying the parameter �!

4AA>A (X)± =
±4AA>A (⇠Planck

✓
)

⇠
syn,!
✓

(�!)
. (6)

• After getting the APS and the corresponding errors, we go to
the next point of choosing the binnation that we’re dividing our APS
array into, we choose a length for the bin, �✓, then get the mean of
each ⇠✓ inside the bin and append to a new array of binned APS

• Last step, compute the j2, after binning the APS and the error
in the same way:

j2 =
’ [X obs

✓
� X exc

✓
(�!)]2

f2
, (7)

where X>1B
✓

and X4G2
✓

(�!) are defined in equations (3) and (6),

respectively, and f2 ⌘ 4AA>A (X)/
p
�✓ where �✓ is the bin length.

With both data sets in hand, that is, Planck and simulated APS
data, we perform a detailed set of analyses intended:
(i) to show, at high confidence level, if the spectrum di�erence
has a signature compatible with statistical noise;
(ii) to find if the spectrum di�erence has a signature that can be
explained by a lensing amplitude with �! > 0, which implies a
larger lensing amplitude, �;4=B > 1, in the fiducial APS reported
by the Planck collaboration;
(iii) to look if the spectrum di�erence has a signature that can be
reproduced by an APS with some cosmological parameter out of
the fiducial flat ⇤CDM model (�;4=B = 1).

3.2 Null hypothesis analyses

In this subsection we will test if the set of values {X4G2
✓

} is statistical
noise, i.e. we test the randomness of the spectrum di�erence. To
perform this test we consider the null hypothesis:

�0: The spectrum di�erence, {X>1B
✓

}, corresponds to a resid-
ual statistical (or white) noise.

To examine this hypothesis we shall use the Ljung-Box test,

which is a modification of the Box-Pierce Portmanteau ‘Q’ statis-
tic (Box & Pierce. 1970). The Ljung-Box test is used to look for
serial correlation in a time series, determining whether or not there
is a remaining structure in the residuals after a forecast model has
been fitted to the data. Basically, the Ljung-Box (LB) test is a useful
tool to evaluate the autocorrelation between the data in analysis, and
its statistical significance quantification.

As a first step, it is necessary to compute the autocorrelation in a
determined data set {X>1B8 } in an interval " = [✓<8=, ✓<0G] with #
data points

d: =

Õ#�:
8=1

⇣
X>1B8 � X>1B8

⌘ ⇣
X>1B
8+: � X>1B8

⌘
Õ#
8=1

⇣
X>1B8 � X>1B8

⌘2
, (8)

where X>1B8 is the average of all # points in the " interval, : is
commonly called lag and d: is called lag : autocorrelation.

Since d: measures correlation between multipoles separated by
: , auntocorrelation d: can be used, in principle, to detect non-
randomness in the data. However, it is more recommended to use
tests considering multiple (sometimes called global or total) auto-
correlations across all the data points jointly in several lags like the
Ljung-Box test (Ljung & Box 1978) (hereafter referred to as LB).
The null hypothesis �0 for this test says that the first ⌘ lags autocor-
relations are jointly zero i.e.

�0 : d1 = d2 = · · · = d: = · · · = d⌘ = 0 , (9)

where ⌘ is the maximum lag considered in the test. In other words,
�0 is that all the analyzed data are uncorrelated and correspond to a
white noise signal.

The LB statistic is defined by

&⌘ = # (# + 2)
⌘’

:=1

d2
:

# � :
, (10)

where d: is the estimated correlation using eq.(8). Thus, is not just
a particular lag : tested but a set of ⌘ estimated autocorrelations.

Since & asymptotically follows a j2 distribution, to determine the
statistical significance of the test, it is compared to a j2 distribution
with ⌘0 = ⌘ � @ degrees of freedom under the condition (Ljung &
Box 1978).

& > j2
1�U,⌘0 , (11)

where @ is the number of parameters used to fit the power spectrum
from which {X4G2

✓
}’s were constructed and U is the significance level.

Then, small ?-values (? < U) will tell us a significant correlation
between the {X>1B

✓
}’s and thus, a rejection of �0.

A choice of the ⌘ parameter in eq. (10) deserves a more detailed
discussion. Several studies has been performed to define which is
the optimal value. For instance, empirically Ljung. (1986) suggests
⌘ = 5, Tsay (2010) suggest ⌘ ⇠ ln # , Hyndman & Athanasopoulos
(2018) ⌘ = <8=(10, #/5), Shumway & Sto�er (2011) ⌘ = 20. Fur-
thermore, Hyndman (2014) employed a simulations study to show
that for very large values of ⌘, LB test could lead to non so unreliable
results. Recently, Hassani & Yeganegi (2020) also used simulations
to evaluate the optimal value for number of lags ⌘ involved in the LB
test. Their results have shown that for the order of thousands data,
optimal value is ⌘ = 50 for U = 0.05 and ⌘ = 25 for U = 0.01.

To perform the LB test we first compute {X4G2
✓

} in di�erent " in-
tervals and applied the test for each interval. Results are summarized
in table 2 where @ = 7, U = 0.01 and, as recommended by Hassani
& Yeganegi (2020), ⌘ = 25 were used. We rerun the test for di�erent
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course, other interpretations for X obs
✓

would be possible, as for in-
stance that it is just statistical noise, and for this reason it is interesting
to examine them too.

Our analyses include the production of simulated APS, from now
on termed synthetic APS, which consider the modeling of the weak
lensing phenomenon on CMB photons for cases with �! = 0 (un-
lensed) and �! < 0 (lensed). The details for the production of these
synthetic APS are the following.

• We use the cosmological parameters corresponding to the ob-
served Planck TT APS, as detailed in the table below, to produce syn-
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and ⇠
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respectively, using the numerical code ⇠!�(( (Blas, Lesgourgues
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parameter.
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(�!), for each value of
the �! parameter (we have modified ⇠!�(( (Blas, Lesgourgues &
Tram Blas et al.) to allow the code to consider the lensing amplitude
AL as a parameter).

• The relative error is calculated by considering the error from
the observed Planck TT APS, ±4AA>A (⇠Planck
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), and dividing it by

the lensed APS that is being modified by varying the parameter �!
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✓
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• After getting the APS and the corresponding errors, we go to
the next point of choosing the binnation that we’re dividing our APS
array into, we choose a length for the bin, �✓, then get the mean of
each ⇠✓ inside the bin and append to a new array of binned APS

• Last step, compute the j2, after binning the APS and the error
in the same way:

j2 =
’ [X obs

✓
� X exc

✓
(�!)]2
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, (7)

where X>1B
✓

and X4G2
✓

(�!) are defined in equations (3) and (6),

respectively, and f2 ⌘ 4AA>A (X)/
p
�✓ where �✓ is the bin length.

With both data sets in hand, that is, Planck and simulated APS
data, we perform a detailed set of analyses intended:
(i) to show, at high confidence level, if the spectrum di�erence
has a signature compatible with statistical noise;
(ii) to find if the spectrum di�erence has a signature that can be
explained by a lensing amplitude with �! > 0, which implies a
larger lensing amplitude, �;4=B > 1, in the fiducial APS reported
by the Planck collaboration;
(iii) to look if the spectrum di�erence has a signature that can be
reproduced by an APS with some cosmological parameter out of
the fiducial flat ⇤CDM model (�;4=B = 1).

3.2 Null hypothesis analyses

In this subsection we will test if the set of values {X4G2
✓

} is statistical
noise, i.e. we test the randomness of the spectrum di�erence. To
perform this test we consider the null hypothesis:

�0: The spectrum di�erence, {X>1B
✓

}, corresponds to a resid-
ual statistical (or white) noise.

To examine this hypothesis we shall use the Ljung-Box test,

which is a modification of the Box-Pierce Portmanteau ‘Q’ statis-
tic (Box & Pierce. 1970). The Ljung-Box test is used to look for
serial correlation in a time series, determining whether or not there
is a remaining structure in the residuals after a forecast model has
been fitted to the data. Basically, the Ljung-Box (LB) test is a useful
tool to evaluate the autocorrelation between the data in analysis, and
its statistical significance quantification.

As a first step, it is necessary to compute the autocorrelation in a
determined data set {X>1B8 } in an interval " = [✓<8=, ✓<0G] with #
data points

d: =
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where X>1B8 is the average of all # points in the " interval, : is
commonly called lag and d: is called lag : autocorrelation.

Since d: measures correlation between multipoles separated by
: , auntocorrelation d: can be used, in principle, to detect non-
randomness in the data. However, it is more recommended to use
tests considering multiple (sometimes called global or total) auto-
correlations across all the data points jointly in several lags like the
Ljung-Box test (Ljung & Box 1978) (hereafter referred to as LB).
The null hypothesis �0 for this test says that the first ⌘ lags autocor-
relations are jointly zero i.e.

�0 : d1 = d2 = · · · = d: = · · · = d⌘ = 0 , (9)

where ⌘ is the maximum lag considered in the test. In other words,
�0 is that all the analyzed data are uncorrelated and correspond to a
white noise signal.

The LB statistic is defined by

&⌘ = # (# + 2)
⌘’

:=1

d2
:

# � :
, (10)

where d: is the estimated correlation using eq.(8). Thus, is not just
a particular lag : tested but a set of ⌘ estimated autocorrelations.

Since & asymptotically follows a j2 distribution, to determine the
statistical significance of the test, it is compared to a j2 distribution
with ⌘0 = ⌘ � @ degrees of freedom under the condition (Ljung &
Box 1978).

& > j2
1�U,⌘0 , (11)

where @ is the number of parameters used to fit the power spectrum
from which {X4G2

✓
}’s were constructed and U is the significance level.

Then, small ?-values (? < U) will tell us a significant correlation
between the {X>1B

✓
}’s and thus, a rejection of �0.

A choice of the ⌘ parameter in eq. (10) deserves a more detailed
discussion. Several studies has been performed to define which is
the optimal value. For instance, empirically Ljung. (1986) suggests
⌘ = 5, Tsay (2010) suggest ⌘ ⇠ ln # , Hyndman & Athanasopoulos
(2018) ⌘ = <8=(10, #/5), Shumway & Sto�er (2011) ⌘ = 20. Fur-
thermore, Hyndman (2014) employed a simulations study to show
that for very large values of ⌘, LB test could lead to non so unreliable
results. Recently, Hassani & Yeganegi (2020) also used simulations
to evaluate the optimal value for number of lags ⌘ involved in the LB
test. Their results have shown that for the order of thousands data,
optimal value is ⌘ = 50 for U = 0.05 and ⌘ = 25 for U = 0.01.

To perform the LB test we first compute {X4G2
✓

} in di�erent " in-
tervals and applied the test for each interval. Results are summarized
in table 2 where @ = 7, U = 0.01 and, as recommended by Hassani
& Yeganegi (2020), ⌘ = 25 were used. We rerun the test for di�erent
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Ljung-Box test
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Regarding the first comment:!
“the data show some signature at the angular scales of the !
acoustic peaks where grav. lensing is important (              )”` > 1000

we performed some best-fit tests using synthetic APS to get:

with the aim to best-fit the data:
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Figure 1. Illustrative examples: plots of the spectrum di�erence X>1B✓ to-
gether with X4G2✓ (�!) , for the cases �! = 0.20 (first and second pan-
els) and �! = 0.22 (third and fourth panels), for ✓ 2 [1100, 2000] and
✓ 2 [1100, 2200] as indicated in the plots. In all these plots we consider
�✓ = 63. Although the best-fit curve in the first and third panels seem equals,
they are indeed slightly di�erent.

give j2 = 1 for �! values within the interval [0.10, 0.30] at 68%
confidence level.

Figure 2. Illustrative examples: plots of the spectrum di�erence X>1B✓ to-
gether with X4G2✓ (�!) for ✓ 2 [1100, 2000] and ✓ 2 [1100, 2200] as
indicated in the plots. In all these plots we consider �! = 0.20. They were
obtained for the bin lengths �✓ = 32, for the first and the second panels and
�✓ = 40 for the third and the fourth panels.

Table 3. Illustrative examples of j2 calculations for di�erent values of �;4=B

and several binnation choices �✓. Some of these cases can be seen in fig-
ures 1, 2, and 3.

�;4=B �✓ = 17 �✓ = 32 �✓ = 41 �✓ = 51 �✓ = 63

0.00 1.0363 1.2809 1.02590 0.95802 1.63446

0.10 0.9414 1.0747 0.7610 0.6416 1.0798

0.20 0.9329 1.0305 0.7094 0.5851 0.8395

0.24 0.9525 1.0561 0.7459 0.6319 0.8274

0.34 1.0565 1.2238 0.9734 0.9150 0.9980

3.4 Cosmological parameters dependence

In the previous section we explore the possibility that the residual
structure in CMB lensing signal be explained by an excess in lens-
ing amplitude �! . However, there is a possibility that such residual
structure could be mimicked by variations in other cosmological pa-
rameters. This avaliation is the main objective in this subsection. The
model consider in this work is the simplest ⇤CDM model with the
six parameters listed in Table I plus lensing amplitude �! . Addition-
ally we shall include one more parameters, the neutrino mass

Õ
<a .

This last was considered because massive neutrinos slow down the
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Figure 3. Illustrative analyses comparing the spectrum di�erence X>1B✓ and
X4G2✓ (�!) for ✓ = [1100, 2200] and ✓ = [1100, 2000] with �✓ = 63 for
�! = 0.20 (upper 2 plots) and �! = 0.22 (lower 2 plots)

Figure 4. j2 as a function of �! and for di�erent number of bins. This
plot shows that, independent of the bin size �✓ , the j2 function exhibits a
minimum for �! < 0, which justify our search for the value �! that best-fits
the observed data X>1B✓ .

Figure 5. 1f residuals resulting from the modification of some cosmological
parameters

Table 4. Table with the numerical values obtained due to the intersection
between the horizontal line, representing the reduced-j2 = 1, with the curves
produced calculating the reduced-j2 for the parameter �! , and considering
various bin-length cases �✓. The first and second points in the table below
represent the values of �! where j2 = 1. As observed in figure 4 there is no
intersection for the case �✓ = 32.

bin length first point second point

�✓ = 17 0.028675 0.29479

�✓ = 32 – –

�✓ = 41 0.02495 0.3305

�✓ = 51 0.0023 0.3477

�✓ = 63 0.16053 0.29425

growth of matter perturbations (Bond et al. 1980; Lesgourgues &
Pastor 2006)

It is well known that APS, ⇠⇤CDM
✓

, is strongly dependent on the

cosmological parameters, then the quantity X>1B
✓

defined in equa-
tion (1) inherit such dependence. The scrutiny of this dependence
is important to confirm if the signal found in the previous section
is indeed due to the lensing e�ect or it also has contribution of the
other cosmological parameters. In order to quantify the influence
of the cosmological parameters in our signal, we consider the 1f
interval for the six ⇤CDM parameters found by using Planck 2018
data Planck Collaboration et al. (2020b). As an example in upper plot
of the fig. 5, we show di�erence between various⇠⇤CDM

✓
curves ob-

tained for the best-fits value and 1f values for the curvature density
parameter ⌦: . The e�ects of the parameters on the APS are changes
in the amplitude only (=B , �B) and changes in the amplitude and
shift of the signal (l1 , l2 , ⌦: ,

Õ
<a , and g?). However, in 1f

interval variations for some parameters are stronger than the others.
To quantify the impact of these modified parameters in the spectrum
di�erence data we compute the absolute value of the residual (lower
plot). Similar plots were produced by the other parameters variation
and they are shown in fig. ??. As it is possible to see, the strongest
impact comes from l2 , ⌦: , and

Õ
<a , and because of this we will

consider only these three parameters in the rest of our analyses (?)
(see, e.g., ?).
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Table 5. Values of �! from the likelihood plot. The last column indicates
the Confidence Level (CL) for having �! > 0 in each binnation case.

bin length �! at max. likelihood 1f interval CL for �! >0

�✓ = 17 0.16036 [0.0883, 0.2326] 2.6f

�✓ = 32 0.177477 [0.1049, 0.2509] 2.8f

�✓ = 41 0.17567 [0.1025, 0.2494] 2.8f

�✓ = 51 0.172072 [0.0986, 0.2466] 2.7f

�✓ = 63 0.22702 [0.1521, 0.3028] 3.5f

Figure 6. Likelihood plots for several bin sizes.

Figure 7. Illustrative example of f intervals for the �✓ = 17 case. As
observed, for this binnation case the value �! = 0 (equivalently �;4=B > 1)
is excluded with 2.6f (i.e., at 99% CL).

4 DISCUSSIONS

We now discuss the exhaustive analyses done with the precise Planck
APS data and the results obtained investigating the statistical features
of the spectrum di�erence X>1B

✓
. Recent analyses have reported the

preference of the �;4=B parameter for a value larger than 1 (Planck
Collaboration et al. 2016b, 2020b), and we wanted to study if this
result could be a statistical artifact or if it has a physical origin.
Our analyses can be considered complementary, and independent, to
those done by the Planck collaboration.

In the previous section we have performed a detailed examina-
tion of the unbinned CMB APS. We have proved that the spectrum
di�erence X>1B

✓
is not statistical noise; additionally we found several

multipole intervals, starting at ✓ & 1000, where this result is true (see
table 2), supporting the crucial result that the spectrum di�erence is
not white noise at small scales. This result is suggestive that some
signature is hidden in the spectrum di�erence, and the signature
shown in these data must be an indication of the phenomenon that
originates it. However, degeneracy can also happen, that is the signa-
ture present in the data could be reproduced by more than one source
and for this reason we also explore diverse hypotheses to explain the
signature and the amplitude of the spectrum di�erence data. Bearing
in mind that, at the scales ✓ > 1000, the acoustic peaks are extremely
sensitive to the lensing phenomenon, the first hypothesis examined
was that the signature in the spectrum di�erence corresponds to a
low lensing amplitude in the Planck best-fitting procedure. As shown
in the analyses of section 3.3 this hypothesis is indeed verified, where
we find a lack of lensing amplitude of around 20% with respect to
the Planck APS fitted assuming the flat ⇤CDM model; moreover we
found several scheme binnations that best-fits the spectrum di�erence
X>1B
✓

, with j2 = 1, with lacking lensing amplitudes �! ⇠ 0.2 (see
tables 4 and 5). According to our likelihood analyses, the synthetic
APS produced for these best-fit procedures of X>1B

✓
, with lensing am-

plitude �! as a parameter, show that �! > 0 at > 99% confidence
level.

Additionally, we have also investigated a possible dependence of
the spectrum di�erence X>1B

✓
, in signature and intensity, on some cos-

mological parameters. To quantify the e�ect of the modified parame-
ters in the spectrum di�erence data we compute the absolute value of
the residual (lower plot of figure 5). As observed, the strongest e�ect
comes from l2 , ⌦: , and

Õ
<a , and because of this we considered

only these three parameters in our study.
Wiliam, aqui falta redondear las informaciones sobre los analises

de la variacion de los parametros cosmologicos

5 CONCLUSIONS

Using synthetic APS X exc
✓

(�!), generated through the equation (4),
we have show that

Then we have done j2 best-fit analyses in order that the spectrum
di�erence be well fitted by some value �! > 0.
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Table 5. Values of �! from the likelihood plot. The last column indicates
the Confidence Level (CL) for having �! > 0 in each binnation case.

bin length �;4=B at max. likelihood 1f interval CL for �;4=B >0

�✓ = 17 0.16036 [0.0883, 0.2326] 2.6f

�✓ = 32 0.177477 [0.1049, 0.2509] 2.8f

�✓ = 41 0.17567 [0.1025, 0.2494] 2.8f

�✓ = 51 0.172072 [0.0986, 0.2466] 2.7f

�✓ = 63 0.22702 [0.1521, 0.3028] 3.5f

Figure 6. Likelihood plots for several bin sizes.

Figure 7. Illustrative example of f intervals for the �✓ = 17 case. As
observed, for this binnation case the value �! = 0 (equivalently �;4=B > 1)
is excluded with 2.6f (i.e., at 99% CL).

bin length �;4=B
Õ
<a ⌦ CL for �;4=B >0

�✓ = 17 0.18+0.063
�0.063 < 0.47 eV 0.0029+0.009

�0.009 3f

�✓ = 63 0.22+0.065
�0.065 < 0.45 eV 0.0013+0.0071

�0.0071 2.9f

4 DISCUSSIONS

We now discuss the exhaustive analyses done with the precise Planck
APS data and the results obtained investigating the statistical features
of the spectrum di�erence X>1B

✓
. Recent analyses have reported the

preference of the �;4=B parameter for a value larger than 1 (Planck
Collaboration et al. 2016b, 2020b), and we wanted to study if this
result could be a statistical artifact or if it has a physical origin.
Our analyses can be considered complementary, and independent, to
those done by the Planck collaboration.

In the previous section we have performed a detailed examina-
tion of the unbinned CMB APS. We have proved that the spectrum
di�erence X>1B

✓
is not statistical noise; additionally we found several

multipole intervals, starting at ✓ & 1000, where this result is true (see
table 2), supporting the crucial result that the spectrum di�erence is
not white noise at small scales. This result is suggestive that some
signature is hidden in the spectrum di�erence, and the signature
shown in these data must be an indication of the phenomenon that
originates it. However, degeneracy can also happen, that is the signa-
ture present in the data could be reproduced by more than one source
and for this reason we also explore diverse hypotheses to explain the
signature and the amplitude of the spectrum di�erence data. Bearing
in mind that, at the scales ✓ > 1000, the acoustic peaks are extremely
sensitive to the lensing phenomenon, the first hypothesis examined
was that the signature in the spectrum di�erence corresponds to a
low lensing amplitude in the Planck best-fitting procedure. As shown
in the analyses of section 3.3 this hypothesis is indeed verified, where
we find a lack of lensing amplitude of around 20% with respect to
the Planck APS fitted assuming the flat ⇤CDM model; moreover we
found several scheme binnations that best-fits the spectrum di�erence
X>1B
✓

, with j2 = 1, with lacking lensing amplitudes �! ⇠ 0.2 (see
tables 4 and 5). According to our likelihood analyses, the synthetic
APS produced for these best-fit procedures of X>1B

✓
, with lensing am-

plitude �! as a parameter, show that �! > 0 at > 99% confidence
level.

Additionally, we have also investigated a possible dependence of
the spectrum di�erence X>1B

✓
, in signature and intensity, on some cos-

mological parameters. To quantify the e�ect of the modified parame-
ters in the spectrum di�erence data we compute the absolute value of
the residual (lower plot of figure 5). As observed, the strongest e�ect
comes from l2 , ⌦: , and

Õ
<a , and because of this we considered

only these three parameters in our study.
Wiliam, aqui falta redondear las informaciones sobre los analises

de la variacion de los parametros cosmologicos

5 CONCLUSIONS

Using synthetic APS X exc
✓

(�!), generated through the equation (4),
we have show that

Then we have done j2 best-fit analyses in order that the spectrum
di�erence be well fitted by some value �! > 0.
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