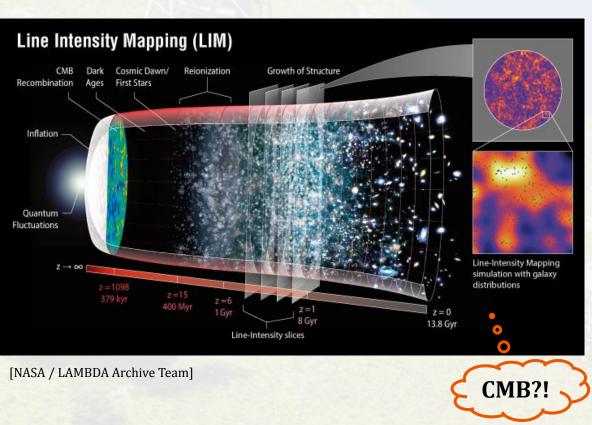


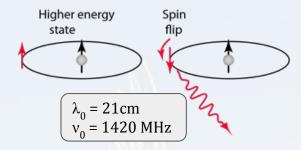
MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

On the recoverability of the BAO signal with the BINGO telescope

Camila Paiva Novaes on behalf of the BINGO collaboration


Divisão de Astrofísica, INPE

COSMO'22


August 22, 2022

The 21 cm Intensity Mapping

Hydrogen 21 cm emission

Cosmological redshift: $\lambda = \lambda_0 (1+z)$

Very high z coverage in tomographic analysis.

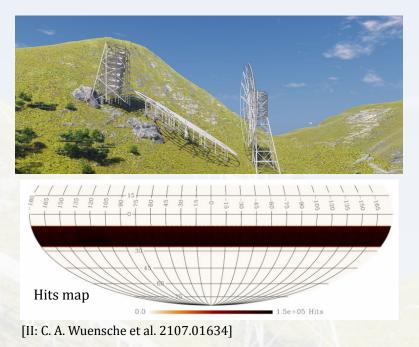
21 cm + optical surveys:

- Improve confidence in the results from optical/NIR.
- Completely different systematics.

The **BINGO** telescope

Baryon Acoustic Oscillations from Integrated Neutral Gas Observations

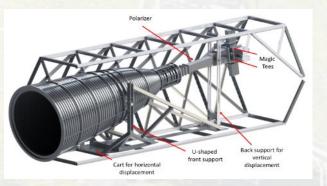
The BINGO telescope



The BINGO telescope: general information

- Transit telescope
- Optical design with 40-m diameter paraboloid primary dish and 34-m diameter hiperboloid secondary dish
- 28 horns in Phase 1
- Coverage: \sim 5324 square deg (½ of the sky)

tomographic approach


- Declination: ~-25 deg
- Angular resolution: 40 arcmin
- Frequency range: 980 to 1260 MHz (0.127 < z < 0.449)

*See the BINGO project papers I to VII (<u>A&A, vol 664, A14-A20</u>) and VIII (<u>CPN et al. 2207.12125</u>) for a complete description of the instrument and scientific goals.

The BINGO telescope: general information

[II: C. A. Wuensche et al. 2107.01634] [IV: Liccardo et al. 2107.01636]

Feed horn:

- Aluminium,
- 800 kg,
- \sim 1.7 m diameter,

3.0×10⁶

2.5×10⁶

2.0×10

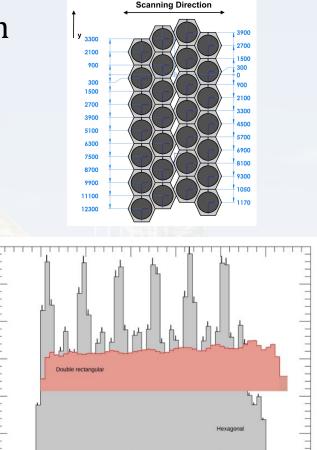
1.5×10⁴

1.0×10⁶

5.0×10⁵

1.10×105

1.15×10


1.20×10

Observations/pixel (hits)

- 4.9 m length.

*Details about optical design [III: F. Abdalla et al. 2107.01635]: See João Alberto's talk!

Double rectangular arrangement

Healpix pixel

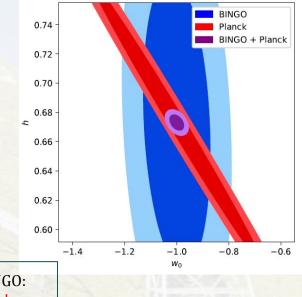
1.35×10

1.40×10

1.45×10

The BINGO telescope: scientific goals

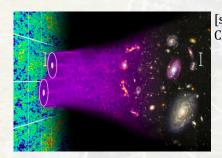
- Cosmology:
 - **(** BAO measurements)
 - Redshift space distortion
 - Constrain cosmological models

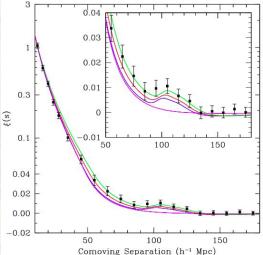

• Astrophysics:

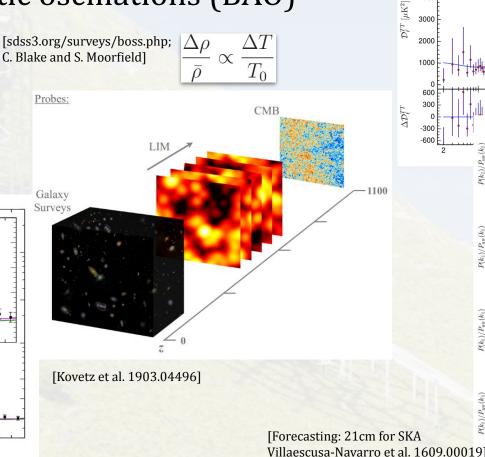
- Fast radio bursts (FRB) [dos Santos et al., in prep.] and transient phenomena
- Galactic science
- Extragalactic science

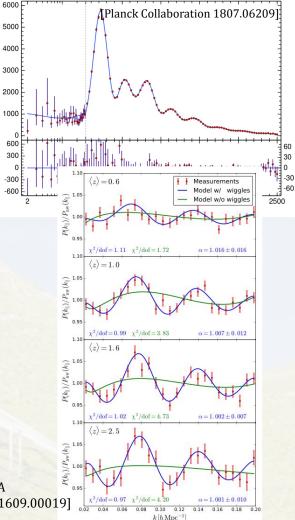
ACDM: h and $\Omega_c h^2$ with 25% improvement.

wCDM: precision of 1.1% and 3.3% for *h* and w_o .

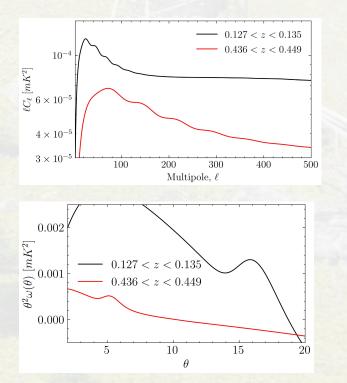

[VII: A. Costa et al. 2107.01639]


*For MCMC analyses with BINGO: See Pablo Motta's poster!


[I: E. Abdalla et al. 2107.01633]


Baryon acoustic oscillations (BAO)

[Eisenstein et al. astro-ph/0501171v1]



BAO measurements with BINGO simulations

[VIII: CPN et al. 2207.12125]

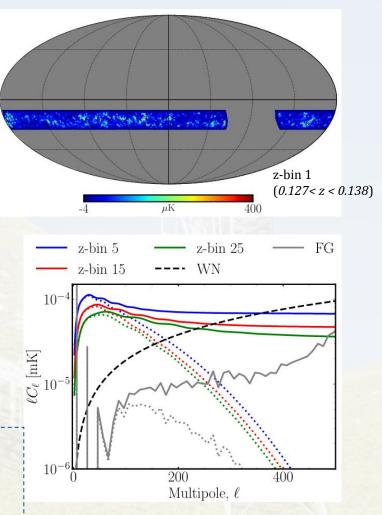
Clustering measurements:

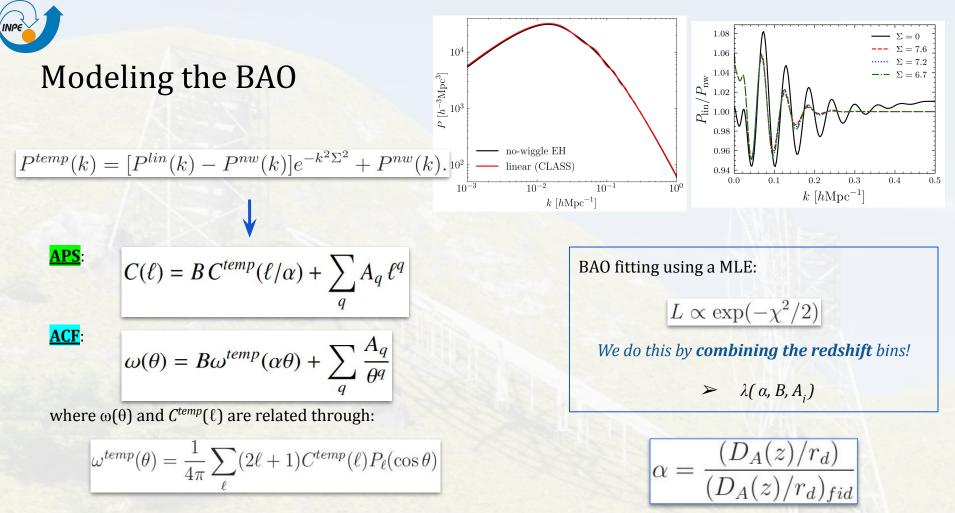
• Angular power spectrum (APS, harmonic space): the pseudo- C_{ℓ} approach

$$C_{\ell} = \sum_{\ell'} \mathcal{M}_{\ell\ell'}^{-1} \hat{C}_{\ell'}$$

• Two-point angular correlation function (ACF; real space):

$$\hat{\omega}(\theta) = \frac{\sum_{ij} \delta T_i \delta T_j w t_i w t_j}{\sum_{ij} w t_i w t_j}$$


BINGO-like simulations


- 21 cm IM: **30 frequency bins*** [0.127 < z < 0.449],
 - 1500 FLASK log-normal realizations Ο [Xavier et al. 1602.08503],
 - 0 100 Mocks constructed from N-body simulations [VI: J. Zhang et al. 2107.01638]

- Foreground contamination,
- Beam size ($\sim 40 \text{ arcmin}$),
- Instrumental noise (white noise).
- Foreground cleaning.

*# of z-bins depends specially on the foreground cleaning process [E. Mericia et al. 2204.08112]. See Larissa Santos talk!

More about *component separation* in: IV: V. Liccardo et al. 2107.01636, V: K. Fornazier et al. 2107.01637, A. Marins et al. in prep.

Shift parameter

[e.g., Camacho et al. 1807.10163, Chan et al. 1801.04390]

Fitting results

INPE

- Fiducial configuration:
 - Joint analyses of $N_z = 10, 10, 10$ consecutive z-bins,
 - $\Delta \ell = 10$ and $\Delta \theta = 0.5$ deg.
 - A_q parameters for C_ε and ω(θ) templates: q = -1, 0, 1, 2 and q = 0, 1, 2, respectively.

+ Robustness tests.

Results can be improved by the choice of an "optimal configuration" for each redshift interval.

Detection criterium: $0.8 < \alpha < 1.2$

Detection

(fid. conf.)

Conclusions

[VIII: CPN et al. 2207.12125]

- The two *clustering estimators* show better results at higher redshifts, but present different *sensitivities* to each *redshift range*.
- *Intermediate* and *higher redshifts* are the most promising in measuring the BAO scale.
- The *APS* estimator provides *slightly better estimates*, with smaller uncertainties and larger *probability of detection* of the BAO signal, achieving ≥ 90% at higher redshifts.
- The presence of thermal *noise* increases the error bars (~ 2.2x) on the α parameter, specially for the APS, while *foreground residual* do not seem to have a significant impact to the analyses.
- Even including some realistic systematic effects, *our results indicate that BINGO has the potential to detect BAO in its redshift range during its Phase 1 (5-year) operation.*

To do:

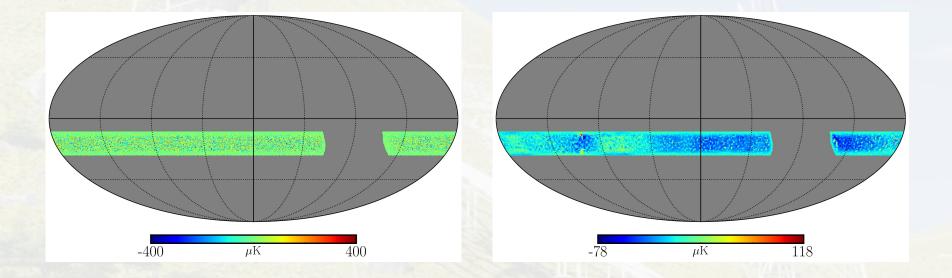
- Simulations: Realistic beams, polarization leakage, 1/f noise, ...
- Analyses: alternative foreground cleaning method, z-bins, and fitting method, test reconstruction process ...

Universidade de São Paulo

MANCHESTER 1824 The University of Manchester

000

https://bingotelescope.org/


camila.novaes@inpe.br

Extra slides:

White noise and foreground residual

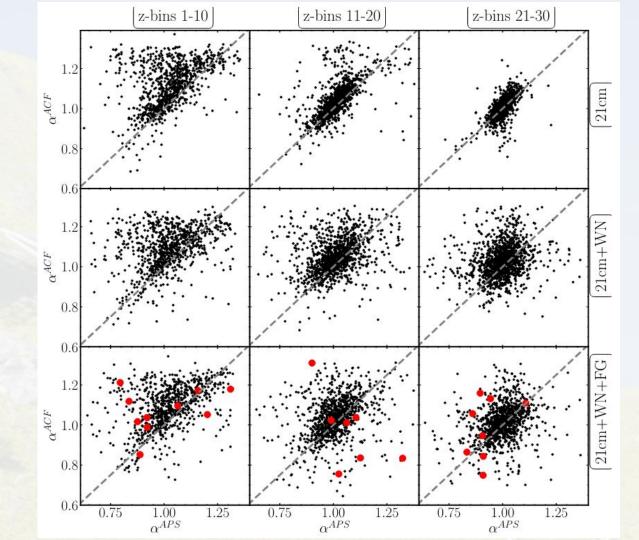
 $\omega(\theta)$

	Tes	ts	z-bins	$\langle \alpha \rangle$	$\langle \sigma_a \rangle$	σ_{68}	σ_{std}	$\langle \chi^2 \rangle / dof(\chi^2_{red})$	N _s (%)	N_d (%)	Mean		
			21 cm only										
			1-10	1.1158	0.1427	0.1209	0.1166	122.49/123 (1.00)	65.27	45.73	1.0067 ± 0.2	2433	
	Fid.	. config.	11-20	1.0426	0.0977	0.0775	0.0923	76.84/70 (1.10)	81.00	75.00	1.0082 ± 0.1	1014	
			21-30	1.0060	0.0565	0.0425	0.0514	69.54/61 (1.14)	92.60	92.00	1.0076 ± 0.0	0507	
							+ white no	oise					
			1-10	1.0906	0.1619	0.1042	0.1066	122.05/123 (0.99)	58.73	48.60	1.0070 ± 0.2	2915	
	Fid.	Config.	11-20	1.0524	0.1213	0.0924	0.0948	76.34/70 (1.09)	80.53	73.80	1.0107 ± 0.1	1470	
			21-30	1.0267	0.0932	0.0807	0.0883	67.88/61 (1.11)	89.60	85.13	1.0070 ± 0.0	0989	_
+ white noise + foreground residuals													
Fid. Config.		1–10	1.0897	0.16	24 0.	1123	0.1118	122.42/123 (1	.00)	57.07	46.27	0.9952 ± 0.3270	
$(\Delta\theta=0.50^\circ;$	- 1	11-20	1.0362	0.12	67 0.0	0969	0.1070	76.60/70 (1.0	09)	70.20	63.93	0.9989 ± 0.1546	
q = 0, 1, 2)		21-30	1.0074	0.10	06 0.	0809	0.0930	68.37/61 (1.	12)	78.00	73.53	0.9965 ± 0.1039	
	$\Delta \theta = 0.25^{\circ}$		11-20	1.0370	0.1307	0.0999	0.1054	166.28/180 (0.92)	71.67	64.87	1.0135 ± 0.2	2560	-
			21-30	1.0063	0.1034	0.0842	0.0970	154.15/164 (0.94)	76.67	72.33	0.9826 ± 0.1	1394	
			1-10	1.0888	0.1647	0.1100	0.1157	155.02/165 (0.94)	57.73	46.60	1.0034 ± 0.3	3245	
	$\Delta \theta$	$= 0.40^{\circ}$	11-20	1.0375	0.1298	0.0969	0.1054	100.85/98 (1.03)	72.00	65.20	0.9981 ± 0.1	1597	
			21-30	1.0160	0.0998	0.0833	0.0982	90.00/86 (1.05)	78.80	73.07	0.9976 ± 0.1	1065	
			1-10	1.1687	0.1299	0.1092	0.1117	130.45/133 (0.98)	37.40	18.73	0.9894 ± 0.3	3321	
	<i>q</i> =	0,1	11-20	1.0364	0.1294	0.1022	0.1070	85.43/80 (1.07)	70.00	63.60	0.9955 ± 0.1	1521	
			21-30	1.0068	0.1005	0.0823	0.0951	78.36/71 (1.10)	85.80	80.67	1.0023 ± 0.0	0989	
			1-10	1.0790	0.1813	0.1432	0.1269	114.55/113 (1.01)	34.93	26.47	1.0015 ± 0.3	3270	
	<i>q</i> =	-1, 0, 1, 2	11-20	1.0344	0.1307	0.0963	0.1018	67.38/60 (1.12)	70.53	65.20	1.0047 ± 0.1	1521	
			21-30	1.0200	0.0954	0.0801	0.0895	58.92/51 (1.14)	85.87	82.20	1.0096 ± 0.1	1014	
			1-10	1.0995	0.1657	0.1046	0.1039	216.71/123 (1.76)	14.20	11.33	0.9952 ± 0.3		
	<i>q</i> =	-2, 0, 1	11–20	1.0444	0.1214	0.0839	0.0904	146.87/70 (2.10)	39.87	37.73	0.9989 ± 0.1	and the second se	
			21-30	1.0178	0.0963	0.0790	0.0891	101.07/61 (1.67)	63.87	61.07	0.9965 ± 0.1	1065	

Fitting results

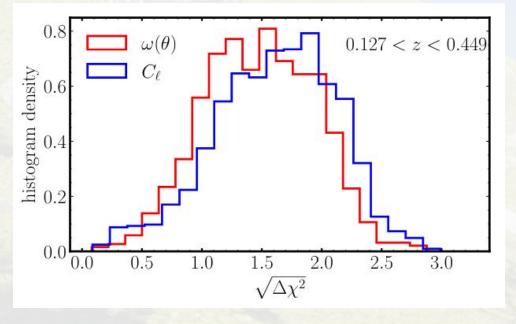
INPE	

 C_{ℓ}

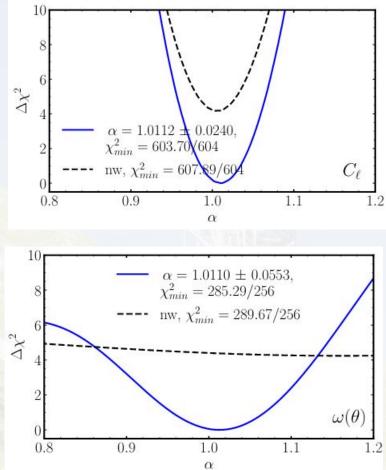

Γ

Tests		z-bins	bins $\langle \alpha \rangle$ $\langle \sigma_{\alpha} \rangle$ σ_{68} σ_{std} $\langle \chi^2 \rangle/dof$		$\langle \chi^2 \rangle / dof$	N _s (%)	N_d (%)	Mean			
			21 cm only								
		1-10	1.0061	0.0594	0.0594 0.1200		102.14/100 (1.02)	93.73	84.20	1.0012 ± 0.06	08
Fid. config.		11-20	1.0083 0.0316		0.0616	0.0889	185.70/207 (0.90)	92.87	87.73	1.0062 ± 0.03	04
		21-30	1.0024	0.0178	0.0318	0.0399	244.17/295 (0.83) 92.93		92.27	1.0028 ± 0.01	52
						+ white no	oise	56	82 V 1		
		1-10	1.0041	0.0653	0.1311	0.1311	102.12/100 (1.02)	92.33	79.20	0.9915 ± 0.06	84
	Fid. config.	11-20	1.0057	0.0410	0.0929	0.1092	185.46/207 (0.91)	90.87	83.27	1.0036 ± 0.04	06
		21-30	0.9965	0.0322	0.0707	0.0897	242.42/295 (0.82)) 91.60 86.87		0.9999 ± 0.03	04
			+ wh	ite nois	e + fore	ground residual					
Fid. Config.	1-10	1.0009	0.06	59 0.	1257	0.1274	102.23/100 (1	1.02)	90.47	78.87	0.9925 ± 0.0684
$(\Delta \ell = 10;$	11-20	1.0012	0.04	18 0.	0888	0.1063	185.53/207 (0).90)	92.47	84.77	0.9985 ± 0.0431
q = -1, 0, 1, 2) 21–30	0.9975	0.032	23 0.0	0701	0.0890	242.88/295 (().82)	88.13	83.73	1.0012 ± 0.0304
	$\Delta \ell = 15$	11-20	1.0070	0.0474	0.1002	0.1154	108.96/108 (1.01)	92.87	83.00	1.0016 ± 0.04	82
		21-30	1.0015	0.0345	0.0685	0.0867	157.06/168 (0.93)	94.47	90.40	1.0020 ± 0.03	55
State State		1-10	1.0299	0.0724	0.1293	0.1128	27.24/17 (1.60)	96.87	87.80	1.0346 ± 0.07	60
	$\Delta \ell = 20$	11-20	1.0199	0.0476	0.1088	0.1117	76.90/71 (1.08)	94.60	86.93	1.0117 ± 0.04	56
1.3			1.0009	0.0366	0.0726	0.0912	116.66/117 (1.00)	96.20	91.47	0.9975 ± 0.03	55
		1-10	1.0523	0.0682	0.1307	0.1334	119.73/120 (1.00)	62.73	50.80	1.0985 ± 0.07	35
	q = 0, 1		1.0558 0.043		0.0788	0.0870	199.91/227 (0.88)	73.33	68.47	1.0626 ± 0.04	31
		21-30	1.0279	0.0333	0.0517	0.0556	254.90/315 (0.81)	76.27	75.67	1.0294 ± 0.03	30
		1-10	0.9995	0.0660	0.1236	0.1279	110.52/110 (1.00)	71.87	62.40	0.9935 ± 0.06	84
	q = 0, 1, 2	11-20	0.9912	0.0419	0.0858	0.1091	192.63/217 (0.89)	82.73	74.80	0.9960 ± 0.04	
1.100		21-30	0.9958	0.0324	0.0637	0.0818	248.84/305 (0.82)	84.33	81.53	0.9987 ± 0.03	04
		1-10	1.0161	0.0664	0.1324	0.1278	110.95/110 (1.01)	83.73	72.40	1.0113 ± 0.06	
	q = -2, 0, 1	11-20	1.0162	0.0422	0.0864	0.1020	193.18/217 (0.89)	88.33	82.13	1.0164 ± 0.04	COMP.
575 NO 13		21-30	1.0097	0.0326	0.0691	0.0870	249.10/305 (0.82)	84.47	80.27	1.0131 ± 0.03	04

Fitting results



Fitting results



Significance

$$S = \sqrt{\Delta \chi^2} = \sqrt{\chi^2 - \chi^2_{nw}(\alpha_{bf})}$$

BAO analyses

#	ī	l _{max}	$[\theta_{min}, \theta_{max}]$	#	īz	ℓ_{max}	$[\theta_{min}, \theta_{max}]$
1	0.131	141	[10.5, 21.0]	16	0.274	301	[5.0, 10.5]
2	0.140	141	[10.5, 20.0]	17	0.284	311	[4.5, 10.5]
3	0.148	151	[9.0, 18.5]	18	0.295	321	[4.5, 10.0]
4	0.157	161	[8.5, 17.5]	19	0.306	331	[4.0, 10.0]
5	0.166	181	[8.0, 17.0]	20	0.318	341	[4.0, 10.0]
6	0.175	201	[7.5, 16.0]	21	0.329	361	[4.0, 9.5]
7	0.184	211	[7.0, 15.5]	22	0.341	371	[3.5, 9.5]
8	0.194	231	[7.0, 15.0]	23	0.353	371	[3.5, 9.5]
9	0.203	251	[6.5, 14.0]	24	0.365	381	[3.5, 9.0]
10	0.213	251	[6.5, 13.5]	25	0.377	391	[3.0, 9.0]
11	0.222	271	[6.0, 13.0]	26	0.390	391	[3.0, 9.0]
12	0.232	271	[6.0, 12.5]	27	0.403	401	[3.0, 8.0]
13	0.242	271	[5.5, 11.5]	28	0.416	401	[3.0, 8.0]
14	0.252	281	[5.5, 11.5]	29	0.429	401	[2.5, 8.0]
15	0.263	291	[5.0, 11.0]	30	0.442	401	[2.5, 8.0]

 $\ell_{min} = 32$