
Does General Relativity hold in galactic scales? A test at a z~0.3 elliptical lens galaxy

Carlos R. Melo-Carneiro, Cristina Furlanetto, Ana L. Chies-Santos IF/UFRGS - Porto Alegre, Brazil carlos.melo@ufrgs.br

01 The goal

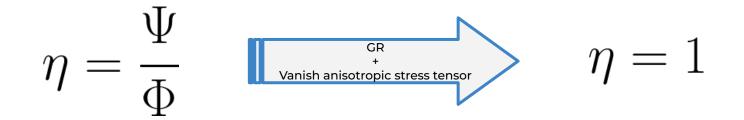
Measuring the galaxy mass through strong gravitational lensing and galactic dynamics. At the same time!

02

How do we do

that?

What have we concluded?


GR still holds!

- Deflection of light by the Sun (e.g. Dyson; Eddington; Davidson 1920)
- Time delay using Cassini spacecraft (Bertotti; Iess; Tortora 2003)
- The Cosmic Microwave Background (e.g. Planck Collaboration et al. 2014)
- Event Horizon Telescope (Event Horizon Telescope Collaboration et al. 2019)
- ... (e.g. Baker; Psaltis; Skordis, 2015)
- Lensing + Kinematics (e.g. Schwab et al. 2010; Cao et al. 2017; Yang et al. 2020)
- Lensing + Spatially resolved kinematics (Collett et al. 2018)
- Lensing + Galaxy cluster kinematics (Pizzuti et al. 2016)

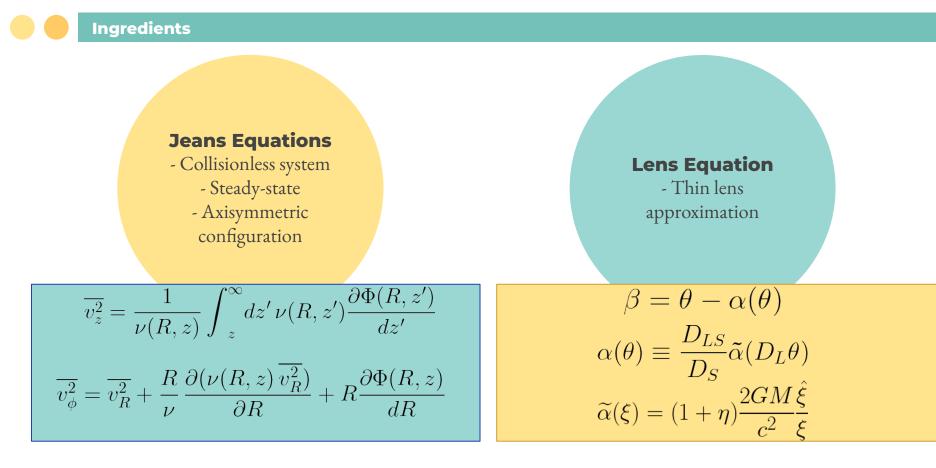
Framework

Linearly perturbed cosmological *metric*

$$dS^{2} = -(1+2\frac{\Phi}{c^{2}})c^{2}dt^{2} + (1-2\frac{\Psi}{c^{2}})h_{ij}dx^{i}dx^{j}$$

Framework

Assumptions


- The space-time metric is given by the linearly perturbed line element, which is in the Newtonian gauge and considers only scalar perturbations;
- There is a well-defined Newtonian limit, where the potentials Φ and Ψ still follow the Poisson equation;
- The gravitational slip parameter is constant on the relevant scales being studied;

Framework

How we measure the slip parameter?

Constrained by gravitational lensing and sensitive to Newtonian and Curvature potentials.

Constrained by the stellar motion, and only sensible to the Newtonian potential.

Ingredients

Multi-Gaussian Expansion (MGE) Formalism

 $j = \frac{M_j}{L_i}$

(Emsellem, Monnet & Bacon 1994; Cappellari 2002)

 Surface brightness profile

- Projected mass profile
- Mass density profile
 - Stellar
 - Dark Matter

$$I(x',y') = \sum_{j=1}^{N} \frac{L_j}{2\pi\sigma_j^2 q'_j} \exp\left[-\frac{1}{2\pi\sigma_j^2} \left(x'_j^2 + \frac{y'_j^2}{q'_j^2}\right)\right]$$
$$\Sigma(x',y') = \sum_{j=1}^{N} \frac{M_j}{2\pi\sigma_j^2 q'_j} \exp\left[-\frac{1}{2\pi\sigma_j^2} \left(x'_j^2 + \frac{y'_j^2}{q'_j^2}\right)\right]$$
$$\rho(R,z) = \sum_{j=1}^{N+M} \frac{M_j}{(2\pi)^{3/2} \sigma_j^3 q_j} \exp\left[-\frac{1}{2\pi\sigma_j^2} \left(R^2 + \frac{z^2}{q_j^2}\right)\right]$$

Ingredients

Fiducial Mass Model

- Self-consistent model (Lens + Kinematics) - MGE
 - Stellar component converting the surface brightness profile
 - Dark Matter Component represented by an elliptical NFW

Parameter	Prior	Description	Physical Unit	
Υ_0	$\mathcal{U}[1.0, 15.0]$	Central M/L	M _☉ /L _☉	
$ u_0$	$\mathcal{U}[0.0, 1.0]$	Lower value of M/L	-	
δ	$\mathcal{U}[0.1, 2.0]$	Smoothness of the M/L profile	arcsec ⁻¹	
β_z	U[-1.0, 0.5]	Anisotropy	107	
i	$\mathcal{U}[68.18, 90.0]^{a}$	Galaxy inclination	degree	
Ks	$\mathcal{U}[0.0, 2.0]$	Scale factor of dark matter halo	R	
r _s	Fixed in 10 R_{eff}	Scale radius of dark matter halo	arcsec	
<i>q</i> DM	$\mathcal{U}[0.4, 1.0]$	Axial ratio of dark matter halo	k -	
shear _{mag}	$\mathcal{U}[0.0, 0.1]$	Shear magnitude	-	
shear_ϕ	$\mathcal{U}[0.0, 180.0]$	Shear angle counterclockwise from x' -axis	degree	
η	N[1,0.09]	Slip parameter	<u>12</u>	

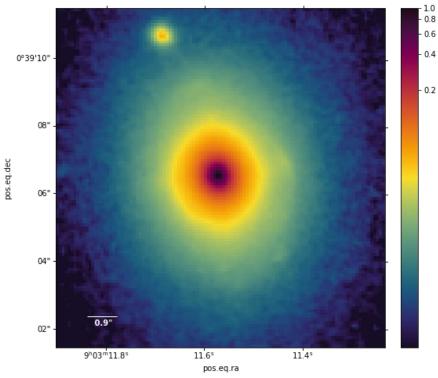
Modelling

Bayesian inference

$$\mathcal{P}(\boldsymbol{\Theta}_{\mathbf{M}}) = \frac{\mathcal{L}(\boldsymbol{\Theta}_{\mathbf{M}})\pi(\boldsymbol{\Theta}_{\mathbf{M}})}{\mathcal{Z}_{\mathbf{M}}}$$

$$\mathcal{L}_{ ext{Model}} \equiv \mathcal{L}_{ ext{Lens}} imes \mathcal{L}_{ ext{Dyn}}$$

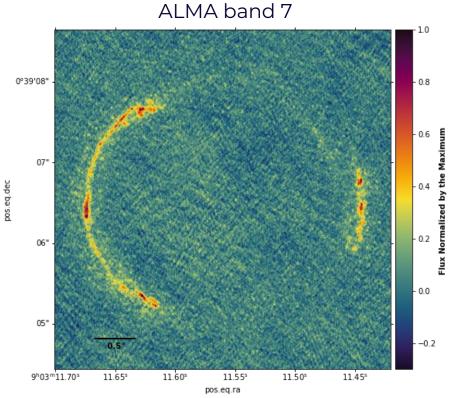
SDP.81


$$z_l = 0.299$$

$$z_s = 3.042$$

Credit: BBC Science Focus Magazine

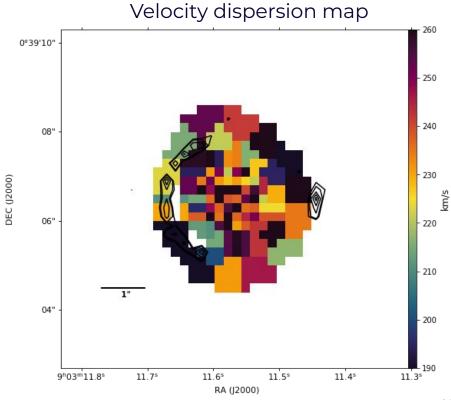
HST/WFC3 F160W



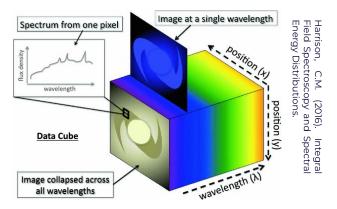
SDP.81

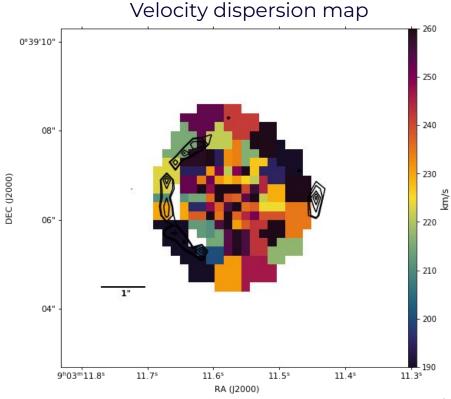
$$z_l = 0.299$$

 $z_s = 3.042$

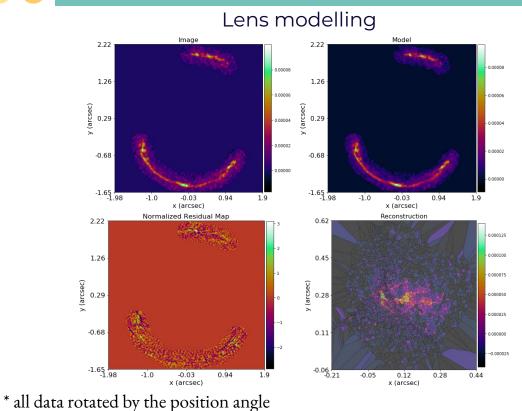


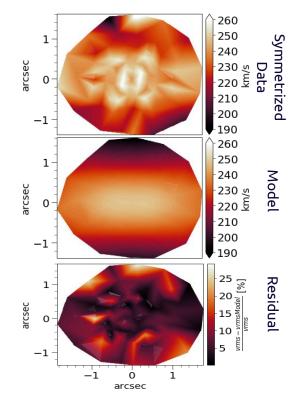
Credit: eso.org




SDP.81 $z_l = 0.299$ $z_s = 3.042$

SDP.81 $z_l = 0.299$ $z_s = 3.042$




Results	Parameter	MP ₅	Physical Units
 Einstein ring ~ 1.61" 	Υ_0	$4.62^{+0.06}_{-0.09}$	M_{\odot}/L_{\odot}
 Consistent with previous works - (e.g., Dye et al. 2014; Vlahakis et al. 2015; 	δ	$1.48^{+0.1}_{-0.09}$	arcsec ⁻¹
Wong et al. 2015)	v_0	$0.88^{+0.07}_{-0.05}$	-
 Mass-to-light ratio ~ 4.51 	i	83 ⁺³	degree
M⊙/L⊙			
 On average inside the Einstein ring 	β_z	$-0.52^{+0.03}_{-0.04}$	-
 Relatively higher than expected - (e.g Wong et al. 2015; Tamura et al. 2015) 	Ks	$0.086^{+0.003}_{-0.003}$	-
Possible gradient in the M/L	<i>q</i> _{DM}	$0.49^{+0.02}_{-0.01}$	-
 Dark matter fraction ~ 35% 			
 Inside the Einstein ring 	η	$1.13^{+0.04}_{-0.03}$	-
 Baryonic dominated in the inner regions 	shear _{mag}	$0.023^{+0.001}_{-0.001}$	-
 Consistent with galaxies at similar redshift - (e.g. Auger et al. 2010; 	shear _{\$\phi\$}	54 ⁺² ₋₄	degree

 C_{a} is a set of d_{a} at al 201 C λ

Results

Dynamical modelling

Results	Parameter	MP ₅	Physical Units
 Einstein ring ~ 1.61" 	Υ_0	$4.62^{+0.06}_{-0.09}$	M_{\odot}/L_{\odot}
 Consistent with previous works - (e.g., 	δ	$1.48^{+0.1}_{-0.09}$	arcsec ⁻¹
Dye et al. 2014; Vlahakis et al. 2015; Wong et al. 2015)	v_0	$0.88^{+0.07}_{-0.05}$	-
 Mass-to-light ratio ~ 4.51 	i	83 ⁺³	degree
M0/L0		-4	C .
□ On av	~	04	
 Relat Won η Possi Relat 1.13^{+0.04} -0.03 	-	03 03 2	
 Dark matter fraction ~ 35% 	9DM	-0.01	
 Inside the Einstein ring 	η	$1.13^{+0.04}_{-0.03}$	175
 Baryonic dominated in the inner regions 	shear _{mag}	$0.023^{+0.001}_{-0.001}$	-
 Consistent with galaxies at similar redshift - (e.g. Auger et al. 2010; 	shear _{\$\phi\$}	54 ⁺² ₋₄	degree
Connonfold at al 2015)			

Impact of the choice of the mass profile

Alternative 1

- No dark matter contribution.
- Denote Total mass represented only by a stellar component.

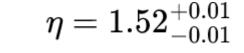
Alternative 2

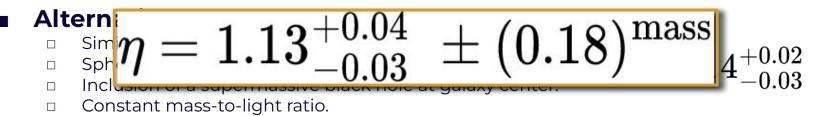
- Similar to Wong et al. (2015) configuration for SDP.81.
- Spherical dark matter halo.
- Inclusion of a supermassive black hole at galaxy center.
- Constant mass-to-light ratio.

Alternative 3

- □ Similar to fiducial model.
- Dark matter scale radius as a free parameter.

 $\eta = 1.52^{+0.01}_{-0.01}$


 $\eta = 1.14^{+0.02}_{-0.03}$


 $\eta = 1.15^{+0.02}_{-0.01}$

Impact of the choice of the mass profile

Alternative 1

- No dark matter contribution.
- Denote Total mass represented only by a stellar component.

Alternative 3

- □ Similar to fiducial model.
- Dark matter scale radius as a free parameter.

$$\eta = 1.15^{+0.02}_{-0.01}$$

Impact of the choice of the stellar library

- Medium resolution INT Library of Empirical Spectra (MILES)
 - □ Vazdekis et al. (2010)
 - □ Systematically smaller by 2.9%.

X-Shooter Spectral Library (XSL)

- □ Gonneau et al. (2020)
- □ Systematically higher by 3.9%.

Impact of the choice of the stellar library

Medium resolution INT Library of Empirical

Spectr $_{\text{Syst}}^{\text{Spectr}} \eta = 1.13^{+0.04}_{-0.03} \pm 0.19 \, (\text{sys})^{\text{kin}}$

X-Shooter Spectral Library (XSL)

- □ Gonneau et al. (2020)
- □ Systematically higher by 3.9%.

Conclusions

Final Inference

Statistical uncertainty

□ ~0.04 due to the sampling

Systematic uncertainties

- 0.18 due to different mass profiles
- 0.19 due to different stellar libraries
 - 0.26 (in quadrature)

$$\eta = 1.13^{+0.04}_{-0.03}~\pm 0.26 {
m (sys)}$$

Conclusions

Final remarks

- We test GR on galactic scales using gravitational lensing and galactic dynamics
- We extend this class of tests to an intermediate redshift (z ~ 0.3)
- The fiducial model considers the contribution of a stellar mass component and a dark matter mass component
- We infer a slip gravitational parameter in accordance with GR within 1σ confidence level

Conclusions

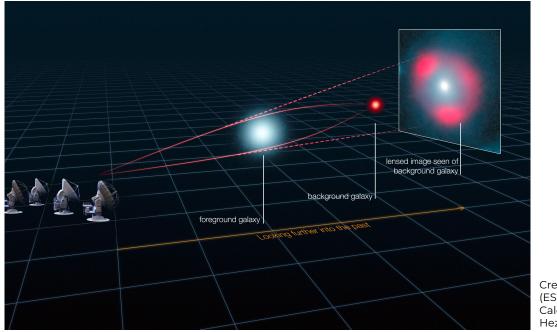
Future work

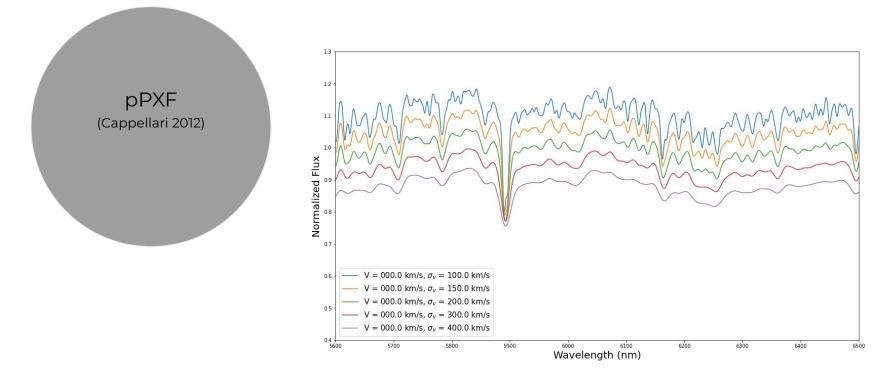
- Get better spectroscopic data (maybe JWST?)
- Extend this test class to other systems (different redshifts and different scales)
- Relax some of the assumptions (e.g. slip parameter no longer constant)

Thanks!

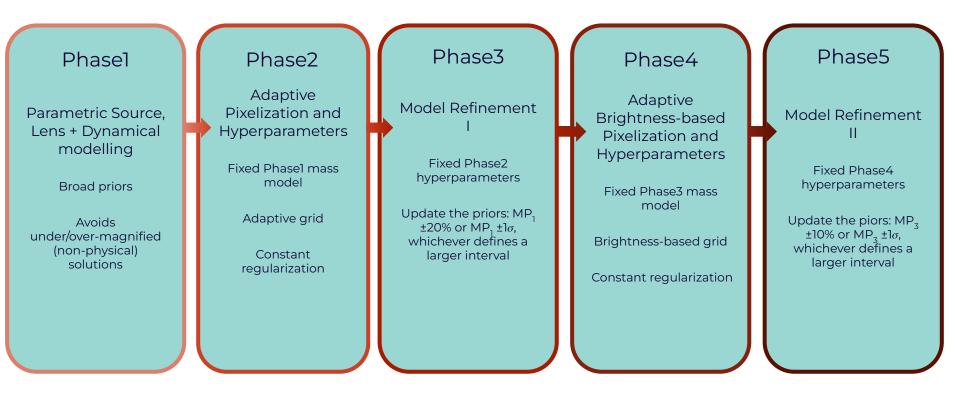
Any questions?

You can find me at:


carlos.melo@ufrgs.br

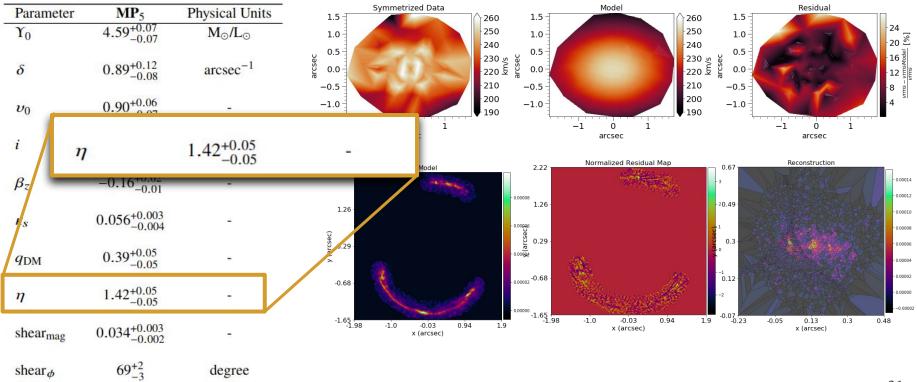

EXTRAS

Strong gravitational lensing



Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Stellar kinematics


The pipeline

But... what if we change the prior?

Parameter	Prior	Description	Physical Unit	Parameter	MP ₅	Physical U
Y ₀	$\mathcal{U}[1.0, 15.0]$	Central M/L	M_{\odot}/L_{\odot}	γ_0	1 50+0.07	M _☉ /L _☉
ν_0	$\mathcal{U}[0.0, 1.0]$	Lower value of M/L	-	δ	$0.89^{+0.12}_{-0.08}$	arcsec ⁻¹
δ	$\mathcal{U}[0.1, 2.0]$	Smoothness of the M/L profile	arcsec ⁻¹		$0.09_{-0.08}$ $0.90_{-0.07}^{+0.06}$	
Bz	$u_{[-1.0, 0.5]}$	Anisotropy	572	$ u_0$	0.90_0.07	-
i	<i>U</i> [68.18, 90.0] ^a	Galaxy inclination	degree	i	80^{+5}_{-5}	degree
x _s	$\mathcal{U}[0.0, 2.0]$	Scale factor of dark matter halo		eta_z	$-0.16^{+0.02}_{-0.01}$	÷
r _s	Fixed in 10 R_{eff}	Scale radius of dark matter halo	arcsec	Ks	$0.056\substack{+0.003\\-0.004}$	-
9DM	$\mathcal{U}[0.4, 1.0]$	Axial ratio of dark matter halo	-	$q_{ m DM}$	$0.39^{+0.05}_{-0.05}$	-
shearmag	$\mathcal{U}[0.0, 0.1]$	Shear magnitude	-	η	$1.42^{+0.05}_{-0.05}$	7
shear _ø	$\mathcal{U}[0.0, 180.0]$	Shear angle counterclockwise from x' -axis	degree	shear _{mag}	$0.034^{+0.003}_{-0.002}$	
η	$\mathcal{U}[-10, 10]$	Slip parameter		shear_ϕ	69^{+2}_{-3}	degree

But... what if we change the prior?

But... what if we change the prior?

Parameter	MP ₅	Physical Units
Υ_0	$4.59^{+0.07}_{-0.07}$	M_{\odot}/L_{\odot}
δ	$0.89^{+0.12}_{-0.08}$	arcsec ⁻¹
v_0	$0.90^{+0.06}_{-0.07}$	-
i	80^{+5}_{-5}	degree
β_z	$-0.16\substack{+0.02\\-0.01}$	÷
K _S	$0.056^{+0.003}_{-0.004}$	-
$q_{\rm DM}$	$0.39^{+0.05}_{-0.05}$	-
η	$1.42^{+0.05}_{-0.05}$	
shear _{mag}	$0.034^{+0.003}_{-0.002}$	-
shear _{\$\phi\$}	69^{+2}_{-3}	degree

Parameter	MP ₅	Physi	
		T Hysk	5/.
Υ_0	$4.62^{+0.06}_{-0.09}$	Physic of the second se	(O) () () () () () () () () () () () () ()
δ	$1.48^{+0.1}_{-0.09}$	arcsec	6, '''
v_0	$0.88^{+0.07}_{-0.05}$	-	
i	83 ⁺³ ₋₄	degree	
β_z	$-0.52^{+0.03}_{-0.04}$	1.2	
K _S	$0.086^{+0.003}_{-0.003}$	-	
<i>q</i> dм	$0.49^{+0.02}_{-0.01}$	-	
η	$1.13^{+0.04}_{-0.03}$	275	
shear _{mag}	$0.023^{+0.001}_{-0.001}$	12	
shear _ø	54^{+2}_{-4}	degree	

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**