DALLE-Mini output

Neutrinos and* Particle Astrophysics: Experimental Overview

Kate Scholberg, Duke University

COSMOS 22 August 24, 2022

*logical AND

What do we know about neutrinos?

$$\begin{pmatrix} e \\ \nu_e \end{pmatrix} \begin{pmatrix} \mu \\ \nu_\mu \end{pmatrix} \begin{pmatrix} \tau \\ \nu_\tau \end{pmatrix}$$

neutral partners to the charged leptons

They have mass and mix!
 3 flavors states, 3 mass states

$$\nu_f \rangle = \sum_{i=1}^N U_{fi}^* |\nu_i\rangle$$

•**The mass is tiny...** from lab experiments, $\Sigma m < 2.4 \text{ eV}$

Interactions in the Standard Model:

*Some experimental anomalies...hints of new states or interactions in the data ...?

The three-flavor neutrino paradigm $| u_f angle = \sum U_{fi}^* | u_i angle$

Parameterize mixing matrix U as

i=1

The three-flavor picture fits the data well

Global three-flavor fits to all data

	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 7.0$)	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
$\theta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
$\sin^2 \theta_{23}$	$0.450\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$
$\theta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$
$\sin^2 \theta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \to 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \rightarrow 0.0245$
$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61\substack{+0.14\\-0.12}$	$8.24 \rightarrow 9.02$
$\delta_{\mathrm{CP}}/^{\circ}$	230^{+36}_{-25}	$144 \to 350$	278^{+22}_{-30}	$194 \to 345$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.41$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

Esteban et al., arXiv:2007.14792, 10.1007/JHEP09(2020)178

What do we *not* know about the three-flavor paradigm?

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

**maybe* related to baryon asymmetry of the Universe?

Natural neutrinos pervade the Universe....

Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF

Neutrinos bring unique information about the nature of natural sources

And astrophysical objects in turn give us sources for the study of **neutrino physics**...

... 3-flavor oscillations, anomalies, BSM searches...

Many opportunities to probe BSM physics

Neutrino observables*: energy, direction, time, flavor

*also, non-neutrino-sector BSM signatures in neutrino detectors

And astrophysical objects in turn give us sources for the study of **neutrino physics**...

...for free! Just need to look up (and down!)

And astrophysical objects in turn give us sources for the study of **neutrino physics**...

There is information over ~25 orders of magnitude in energy

There is a vast array of detector technologies, and detector instances, existing and proposed

From arXiv:2203.08096v2

Multi-Messenger Astrophysics Many, many detectors

Shunsaku Horiuchi, Snowmass Neutrino Colloquium

The standard disclaimer....

Multi-messenger astronomy

Neutrino astrophysics

A "flight" of examples

Detectors for ultra-high energy neutrinos (>TeV)

Long-string Water Cherenkov

Water and ice

Antenna-based detectors

Cosmic-ray shower detectors

Ground-based or space-based

CeCube

possible "jetted AGN"

TXS0506+056

IceCube-170922

"Multimessenger observations of a flaring blazar coincident with highenergy neutrino IceCube-170922A", The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams. A. Olinto @ Snow science 361, 2018

A. Olinto @ Snowmass"Blue Sky" session

Cosmogenic Neutrinos

Batista et al, arXiv:1903.06714.pdf

Multiple programs going after these

Large (multi-kton) detector technologies for ~GeV scale

Water Cherenkov Trackers **Liquid Argon** Time Projection Chamber (a diverse category) Cheap material, Good particle proven at very reconstruction large scale

Excellent particle reconstruction

Water & tracking detectors made the original atmospheric neutrino oscillation measurements, and are now combined w/beams...

...they make good neutrino telescopes too!

Next-generation long-baseline beam experiments

- 295-km baseline
- 260k (188k) ton mass water Cherenkov detector
- First data in 2027

- 1300-km baseline
- 4 10-kton LArTPC modules
- 4850-ft depth
- Phase 2 "Module of Opportunity" for 3&4

Multi-purpose detectors, broad physics programs in both cases, including astrophysical neutrinos (over a range of energies)

Now moving down in energy to the few-100 MeV scale

The standard disclaimer...

Multi-messenger astronomy

Neutrino astrophysics

A "flight" of examples

The standard disclaimer...

Multi-messenger astronomy

Neutrino astrophysics

A "f

Having a bit more of my favorite...

Large detector technologies for low energies

Generally limited by efficiency & background at ~MeV scale

Neutrinos from core-collapse supernovae

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of all flavors with ~tens-of-MeV energies

(Energy can escape via v's) Mostly v-vbar pairs from proto-nstar cooling

Timescale: prompt after core collapse, overall ∆t~10's of seconds

Fluxes as a function of time and energy

Neutrinos per cm² per bin (per ms per 0.5 MeV)

Another example of a model

black hole formation!

Model by L. Huedepohl

```
On this flux plot, for ~10 seconds,
diffuse supernova neutrino background x 10<sup>9-1010</sup> !
```


Supernova neutrino detector types

Water Cherenkov detectors

Super-Kamiokande

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

detection of neutron tags event as *electron antineutrino*

- especially useful for diffuse SN signal (which has low signal/bg)
- also useful for disentangling flavor content of a burst (improves pointing, and physics extraction)

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

 $\mathsf{n} + \mathsf{Gd} \to \mathsf{Gd}^* \to \mathsf{Gd} + \gamma$

$$\sum E_{\gamma} = 8 MeV$$

SK-Gd is running with 0.01% Gd (13.2 tons of $Gd_2(SO_4)_3$ *8H₂O)

http://snews.bnl.gov/snmovie.html

Long string water Cherenkov detectors

~kilometer long strings of PMTs in very clear water or ice (IceCube, KM3NeT)

Nominally multi-GeV energy threshold... but, may see burst of low energy (anti-) v_e 's as coincident increase in single PMT count rate

Map overall time structure of burst by tracking the single-PMT hit glow

Scintillation detectors

Liquid hydrocarbon (C_nH_{2n}) that emits (lots of) photons when charged particles lose energy in it

Will see supernova electron antineutrinos, with good energy resolution

$$\bar{\nu}_e + p \to e^+ + n$$

Many examples worldwide of current and future detectors

Liquid argon time projection chambers

fine-grained trackers ionization + scintillation photons

sensitive to **electron neutrinos** (as opposed to antineutrinos)

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

ICARUS (Italy→USA) 0.6 kton

MicroBooNE (USA) 0.2 kton

SBND

(USA)

By Joshua Queen

Future Large Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 260 kton water Japan JUNO 20 kton scintillator (hydrocarbon) China **DUNE** 40 kton argon USA

• Hyper-K /JUNO are primarily sensitive to nuebar

 $\bar{\nu}_e + p \to e^+ + n$

• DUNE is primarily sensitive to **nue**

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

extreme complementarity

In general, the whole is more than the sum of the parts for multi-messenger astronomy

K. Nakamura et al., MNRAS 2016

Neutrinos arrive earlier than the first light from a supernova... combine signals for a high-confidence prompt alert, enabling more physics & astrophysics

Dark matter detectors as neutrino observatories

Plot from Snowmass CF01 Image: J. Link *Science* Perspectives Once nuclear recoil detectors get sensitive enough, they are blinded by natural neutrinos

Interesting things may eventually emerge from the fog...

O'Hare [2109.03116]

Search for CEvNS from **solar neutrinos** with the XENON-1T experiment

Limits only so far ... but eventually we'll see the glare

Supernova burst detection in large DM detectors

DARWIN

Example: dual-phase xenon time projection chambers

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

Also: DarkSide-20K, ARGO, RES-NOvA,...

And now, down at the lowest energy end....

Indirect information about CNB from cosmology

Yvonne Wong, Snowmass Neutrino colloquium

Indirect information about CNB from cosmology

Yvonne Wong, Snowmass Neutrino colloquium

Future cosmological probes								
			1σ sensitivity to $\sum m_{ u}$	1σ sensitivity to $N_{ m eff}$				
	ESA Euclid	2024	0.011 - 0.02 eV	0.05				
	LSST	2024	0.015 eV	0.05				
CMB-S4 Next Generation CMB Experiment	CMB-S4	2027	0.015 eV	0.02 - 0.04				
F (Minimum $\sum m_{\mathcal{V}} = \frac{1}{2}$ from neutrino oscillat	= 0.06 eV ions ss ordering)	Detection of t neutrino mass	Detection of the absolute neutrino mass may be possible!				

Neutrinos and Cosmology: indirect CNB

Yvonne Wong, Snowmass Neutrino colloquium

- Cosmological measurements tell us about v properties
- Lab experiments help to constrain cosmological fits

Direct detection of Cosmic Neutrino Background

Very, very hard... lots of ideas but few promising... Best possibility: "zero-threshold reactions"

C.Tully, Snowmass white paper workshop talk

Take-Away Messages

Neutrinos are messengers of astrophysics and cosmology

• They tell us what's happening deep inside objects, and point from far away

Natural neutrinos are messengers of *physics*

- Astrophysical sources are free!
 Just need to build the detector...
- Enable 3-flavor osc and huge range of BSM searches

catching rain water in many different sized buckets in a big field and a dancing person in a raincoat catching rain in a cup

Not a competition! We want to catch them all!