Muon Collider Physics: Status and Perspectives

Andrea Wulzer

arXiv:1901.06150

Lepton collider's competitive advantage:

arXiv:1901.06150

Lepton collider's competitive advantage:

arXiv:1901.06150

Lepton collider's competitive advantage:

All the energy is stored in the colliding partons

No energy "waste" due to parton distribution functions

High-energy physics probed with much smaller collider energy

Examples:

★= FCC reach

Comparison even more favourable for EWK-only part. like **Higgsino** and **Wino** (potential **Dark Matter**)

Reference Point:

14 TeV μ-collider >> FCC@100 TeV

Target Energy and Luminosity

arXiv:1901.06150

Energy:

For a striking **Direct** Exploration program, after HL-LHC*, energy should be **close or above 10 TeV**

At **few TeV energy** one can still exploit high partonic energy for a striking **Indirect** Exploration program, by **High-Energy Precision**We can borrow **CLIC** physics case (see below)

Luminosity:

$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \text{ TeV}} \right)^2 2 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1}$$

Set by asking for 100K SM "hard" SM pair-production events. Compatible with other projects (e.g. CLIC = $(3\,\text{TeV}/10\,\text{TeV})^2\,\mathbf{6}\cdot 10^{35}$) If much less, we could only bet on Direct Discoveries! Could be reduced by running longer than 5yrs and > 1 l.P.

*see arXiv:1910.11775 for HL-LHC and F.C. projections summary

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy Copy physics case from (high-energy) CLIC:

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy Copy physics case from (high-energy) CLIC:

High-Energy Precision (e.g., Higgs Compositeness)

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

High-Energy Precision (e.g., Higgs Compositeness)

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

High-Energy Precision (e.g., Higgs Compositeness)

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WIMP Dark Matter

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WIMP Dark Matter
- ... see arXiv:1812.02093

THE CLIC POTENTIAL FOR NEW PHYSICS

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WIMP Dark Matter
- ... see <u>arXiv:1812.02093</u>

Towards the µ@3TeV Physics Potential

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WIMP Dark Matter
- ... see arXiv:1812.02093

Towards the µ@3TeV Physics Potential

We lack Higgs and top line-shape measurements at 380 GeV CLIC We loose much for BSM potential? Rely on near-future Higgs-factory?

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WIMP Dark Matter
- ... see arXiv:1812.02093

Towards the µ@3TeV Physics Potential

We lack Higgs and top line-shape measurements at 380 GeV CLIC

We loose much for BSM potential? Rely on near-future Higgs-factory?

Select CLIC studies to be adapted to μ case.

No beamstrahlung clear advantage. Beam decay bck. clear disadvantage

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WIMP Dark Matter
- ... see arXiv:1812.02093

Towards the µ@3TeV Physics Potential

We lack Higgs and top line-shape measurements at 380 GeV CLIC We loose much for BSM potential? Rely on near-future Higgs-factory?

Select CLIC studies to be adapted to μ case.

No beamstrahlung clear advantage. Beam decay bck. clear disadvantage

Detector-level H>bb demonstrates feasibility

See arXiv:2001.04431 and Donatella's talk

Few (~3) TeV is a reasonable "low" energy target

Radiation under control, acceleration relatively easy

Copy physics case from (high-energy) CLIC:

- High-Energy Precision (e.g., Higgs Compositeness)
- Higgs couplings including 3-linear
- Baryogenesis/Extra Scalars
- WILLE

• .

Much More in Marc's and Marcel's talks

Towa

We lack Higgs and top line-shape measurements at 380 GeV CLIC We loose much for BSM potential? Rely on near-future Higgs-factory?

Select CLIC studies to be adapted to μ case.

No beamstrahlung clear advantage. Beam decay bck. clear disadvantage

Detector-level H>bb demonstrates feasibility

See arXiv:2001.04431 and Donatella's talk

Above 10 TeV I start talking about "Dream Machine" Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Above 10 TeV I start talking about "Dream Machine"

Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Indirect reach much much better than FCC-hh:

High-Energy Precision (e.g., Higgs Compositeness, see here, there)

Above 10 TeV I start talking about "Dream Machine"

Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Indirect reach much much better than FCC-hh:

• High-Energy Precision (e.g., Higgs Compositeness, see here, there)

Above 10 TeV I start talking about "Dream Machine"

Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Indirect reach much much better than FCC-hh:

- High-Energy Precision (e.g., Higgs Compositeness, see here, there)
- Precision 3-linear and 4-linear (see here, and Mario's talk)

Above 10 TeV I start talking about "Dream Machine"

Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Indirect reach much much better than FCC-hh:

- High-Energy Precision (e.g., Higgs Compositeness, see here, there)
- Precision 3-linear and 4-linear (see <u>here</u>, and Mario's talk)
- Huge VBF rate definitely offers other opportunities (see here)

Above 10 TeV I start talking about "Dream Machine"

Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Indirect reach much much better than FCC-hh:

- High-Energy Precision (e.g., Higgs Compositeness, see here, there)
- Precision 3-linear and 4-linear (see <u>here</u>, and Mario's talk)
- Huge VBF rate definitely offers other opportunities (see here)

The Very High Energy Muon Collider is a Dream

Above 10 TeV I start talking about "Dream Machine"

Direct reach comparable with FCC-hh

But much better for EW-only (see e.g. here)

Indirect reach much much better than FCC-hh:

- High-Energy Precision (e.g., Higgs Compositeness, see here, there)
- Precision 3-linear and 4-linear (see here, and Mario's talk)
- Huge VBF rate definitely offers other opportunities (see here)

The Very High Energy Muon Collider is a Dream

And, often, Dreams DO become Reality!

Thank You!