Probing heavy neutrinos at lepton colliders

Muon Collider Meeting

March 31th, 2020

Julien Baglio

Outline

Introduction

WWH production

HHH Coupling

Outlook

Massive neutrinos and New Physics

Neutrino oscillations: confirmed experimentally in 1998

[Super-Kamiokande, PRL 81 (1998) 1562]

- ⇒ neutrinos are massive! ⇒ new physics required to account for their mass
- Standard Model: $L = \binom{\nu_L}{\ell_I}, \tilde{\phi} = \binom{H^{0*}}{H^-}$
 - No right-handed neutrino $\nu_R \Rightarrow$ No Dirac mass term

$$\mathcal{L}_{\mathrm{mass}} = -Y_{\nu} \bar{L} \tilde{\phi} \nu_{R} + \mathrm{h.c.}$$

▶ No Higgs triplet $T \Rightarrow$ No Majorana mass term

$$\mathcal{L}_{\mathrm{mass}} = -rac{1}{2}
hoar{L}TL^c + \mathrm{h.c.}$$

- lacktriangle Necessary to go beyond the Standard Model for u mass
 - Radiative models
 - R-parity violation in supersymmetry
 - Seesaw mechanisms $\rightarrow \nu$ mass at tree-level

The inverse seesaw (ISS) mechanism

- Lower seesaw scale from (nearly) conserved lepton number
- Add fermionic gauge singlets ν_B (L = +1) and X (L = -1)

[Mohapatra, PRL 56 (1986) 561; Mohapatra, Valle, PRD 34 (1986) 1642; Bernabéu et al., PLB 187 (1987) 303]

$$\mathcal{L}_{\mathrm{ISS}} = -Y_{\nu}\overline{L}\tilde{\phi}\nu_{R} - M_{R}\overline{\nu_{R}^{c}}X - \frac{1}{2}\mu_{X}\overline{X^{c}}X + \mathrm{h.c.}$$

with
$$m_D = Y_{\nu} v / \sqrt{2}$$
, $M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$

$$V_R \qquad V_R \qquad V_R$$

$$m_
u pprox rac{m_D^2}{M_B^2} \mu_X, \quad m_{N_1,N_2} pprox \mp M_B + rac{\mu_X}{2}$$

2 scales: μ_X and M_R

- Decouple neutrino mass generation from active-sterile mixing
- Inverse seesaw: $Y_{\nu} \sim \mathcal{O}(1)$ and $M_R \sim 1$ TeV ⇒ within reach of the LHC and low energy experiments

Linking the Higgs sector and neutrinos

How to search for heavy neutrino with $m_{\nu} > \mathcal{O}(1 \text{ TeV})$?

Use the Higgs sector to probe neutrino mass models

- TeV-scale neutrinos + Large Yukawa couplings
- ⇒ Possibly large deviations from SM properties in the Higgs sector
- Some Higgs observables:
 - Lepton flavor violating Higgs decays [see e.g. Arganda et al., PRD 91 (2015) 015001]
 - Triple Higgs coupling [J.B., Weiland, PRD 94 (2016) 013002; JHEP 1704 (2017) 038]
 - Higgs production at lepton colliders [see Antusch, Cazzato, Fischer, Int.J.Mod.Phys. A32
 (2017) 1750078; J.B., Pascoli, Weiland, EPJC 78 (2018) 795]

Most relevant constraints for the ISS

• Accommodate low-energy neutrino data using μ_X -parametrization

$$\mu_X = M_R^T Y_{
u}^{-1} U_{
m PMNS}^* m_
u U_{
m PMNS}^\dagger Y_
u^{T-1} M_R v^2$$
 and beyond

or Casas-Ibarra parametrization

$$vY_{
u}^T={
m diag}(\sqrt{M_1}\,,\sqrt{M_2}\,,\sqrt{M_3})~R~{
m diag}(\sqrt{m_1}\,,\sqrt{m_2}\,,\sqrt{m_3})U_{
m PMNS}^\dagger$$
 with $M=M_R\mu_X^{-1}M_R^T$

- Charged lepton flavor violation (LFV) → For example: $Br(\mu \to e\gamma) < 4.2 \times 10^{-13}$ [MEG, EPJC 76 (2016) 434]
- Global fit to EWPO and lepton universality tests [Fernandez-Martinez et al., JHEP 1608 (2016) 033]
- Electric dipole moment: 0 with real PMNS and mass matrices
- Invisible Higgs decays: $M_R > m_H$, does not apply
- Yukawa perturbativity: $|Y_{\nu}^2/(4\pi)| < 1.5$

Parameter space (Casas-Ibarra parametrization)

Parameter scan in Casas-Ibarra parametrization

- Pass all constraints
- Excluded by Theory
- Excluded by EWPO
- Excluded by Theory+EWPO
- Excluded by LFV
- LFV limit
- --- Neutrino oscillations limit

Random scan: 180 000 points with degenerate (diagonal) M_R and μ_X

[J.B., Weiland, JHEP 1704 (2017) 038]

Strongest constraints:

- LFV (mainly $\mu \rightarrow e\gamma$)
- Yukawa perturbativity

⇒ Need to escape LFV

Suppressing LFV constraints

- How to evade the LFV constraints?
- lacktriangle Approximate formulas for large $Y_{
 u}$ [Arganda *et al.*, PRD 91 (2015) 015001]

$$\mathsf{Br}_{\mu o e \gamma}^{\mathrm{approx}} = 8 \times 10^{-17} \mathsf{GeV}^{-4} \frac{m_{\mu}^{5}}{\Gamma_{\mu}} |\frac{v^{2}}{2 M_{B}^{2}} (Y_{\nu} Y_{\nu}^{\dagger})_{12}|^{2}$$

• Solution: Textures with $(Y_{\nu}Y_{\nu}^{\dagger})_{12}=0$

$$Y_{ au\mu}^{(1)} = |Y_
u| \left(egin{array}{cccc} 0 & 1 & -1 \ 0.9 & 1 & 1 \ 1 & 1 & 1 \end{array}
ight)$$

[taken from Arganda et al., PLB 752 (2016) 46]

Or even take Y_ν diagonal

WWH calculation in the ISS

- Tree-level calculation with SM contributions
 + Majorana neutrinos contributions
- Destructive interference between SM and neutrinos
- SM electroweak corrections negligible for $\sqrt{s} > 600 \text{ GeV}$

[Mao et al., EPJC 59 (2009) 761]

• Input values: G_{μ} scheme and PDG values for the masses

WWH results for diagonal Y_{ν}

[J.B., Pascoli, Weiland, EPJC 78 (2018) 795; de Blas et al., arXiv:1812.02093]

Polarized vs unpolarized beams:

$$\sigma_{\text{pol}} = \frac{1}{4} \left[\left(1 - P_{e^{+}} \right) \left(1 + P_{e^{-}} \right) \sigma_{LR} + \left(1 + P_{e^{+}} \right) \left(1 - P_{e^{-}} \right) \sigma_{RL} \right]$$

Heavy neutrino contribution

$$\Delta^{\mathrm{BSM}} = (\sigma^{\mathrm{ISS}} - \sigma^{\mathit{SM}})/\sigma^{\mathit{SM}}$$

- ullet $Y_{\nu} = |Y_{\nu}|I_3$, M_R diagonal with $M_{R_1} = 1.51 M_R$, $M_{R_2} = 3.59 M_R$, $M_{R_1} = M_R$
- Benchmark scenario with $M_R = 2.4$ TeV, $|Y_{\nu}| = 1$
- With $P_{e^+}=0$, $P_{e^-}=-80\%$ (CLIC baseline), enhanced cross section AND keep same $\Delta^{\rm BSM}$, down to -38% at 3 TeV
- Beyond 5 TeV: sizable positive Δ^{BSM}

WWH Contour map at 3 TeV

- $\mathbf{Y}_{\nu} = |Y_{\nu}|I_3$, M_R diagonal with $M_{R_1} = 1.51M_R$, $M_{R_2} = 3.59M_R$, $M_{R_3} = M_R$
- Sizable effects on a substantial part of the parameter space! Motivate a detailed sensitivity analysis [J.B., Han, Huang, Weiland, in preparation]
- Complementary to existing observables
 → Provide a new probe of the O(10) TeV region of neutrino mass models

Enhancing the deviation with cuts

Looking at distribution to enhance the deviation

Choose $|\eta_{H/W^{\pm}}| < 1$ and $E_H > 1$ TeV

ightarrow Deviation enhanced to $\Delta^{
m BSM}=-66\%$ $\sigma^{
m SM}_{
m pol,cuts}=$ 0.42 fb and $\sigma^{
m ISS}_{
m pol,cuts}=$ 0.14 fb

Comparison with λ_{HHH} probe

1-loop observable: The triple Higgs coupling λ_{HHH} [J.B., Weiland, JHEP 1704 (2017) 038]

- Measuring λ_{HHH} : A major target of future collider experiments
 - → Look at the loop corrections modified by heavy neutrinos
- ullet Define $\Delta^{
 m BSM} = \left(\lambda_{HHH}^{
 m full} \lambda_{HHH}^{
 m SM}
 ight) \left/\,\lambda_{HHH}^{
 m SM}$

Comparison with λ_{HHH} probe

- Effects clearly visible at the CLIC 3 TeV! (13% sensitivity)

 [H. Abramowicz et al., Eur.Phys.J C77 (2017) 475]; approximate formula in green

 Potentially stronger effect at energies beyond 3 TeV
- WWH process probes a larger subset of the parameter space, HHH complementary probe

Conclusions and outlook

- Neutrino oscillations: New physics needed to generate m_n
 - ightarrow low-scale seesaw generate tree-level m_{ν} , testable at current and future experiments

Inverse seesaw allows for $Y_{\nu} \sim \mathcal{O}(1)$ AND $M_R \sim \mathcal{O}(0.1-10)$ TeV

- How to probe the regime with real, diagonal Y_{ν} (hard to test)?
 - ⇒ Study of neutrino effects on Higgs properties
- Neutrino effects on W⁺W⁻H production cross section at lepton colliders: -38% effects can be reached at 3 TeV
 - → Measurable at future colliders such as CLIC
 - → Probe a new part of the parameter space of the mass models
 - → Generic effect applicable to a wide range of low-scale seesaw models
 - \rightarrow Can be enhanced to -66% effect with suitable cuts
- Muon collider beyond 3 TeV with a fantastic potential: recast of the results at electron-positron colliders with a different mixing (μN vs eN)

Backup slides

Next-order terms in the μ_X -parametrization

- Weaker constraints on diagonal couplings \rightarrow Large active-sterile mixing $m_D M_B^{-1}$ for diagonal terms
- Previous parametrizations built on the 1st term in the $m_D M_R^{-1}$ expansion \rightarrow Parametrizations break down
- Solution: Build a parametrization including the next order terms
- The next-order μ_X -parametrization is then

$$\mu_{X} \simeq \left(\mathbf{1} - \frac{1}{2}M_{R}^{*-1}m_{D}^{\dagger}m_{D}M_{R}^{T-1}\right)^{-1}M_{R}^{T}m_{D}^{-1}U_{\mathrm{PMNS}}^{*}m_{\nu}U_{\mathrm{PMNS}}^{\dagger}m_{D}^{T-1}M_{R}$$
 $\times \left(\mathbf{1} - \frac{1}{2}M_{R}^{-1}m_{D}^{T}m_{D}^{*}M_{R}^{\dagger-1}\right)^{-1}$