

Tracking studies

P. Andreetto, N. Bartosik, L. Buonincontro, <u>M. Casarsa</u>, F. Collamati, A. Gianelle, D. Lucchesi, C. Riccardi, P. Sala, P. Salvini, L. Sestini, I. Vai

Outline

- Brief introduction to set the context;
- overview of the detector;
- the tracking system;
- first studies towards a full event tracking with beam-induced background overlaid:
 - tracker hit occupancy from the beam-induced background;
 - tracking efficiency for muons from the interaction region;
- next steps.

Introduction

- In the past months we have migrated from MAP's simulationreconstruction framework to CLIC's ILCsoft (and to CLIC's detector model).
- We are still using MAP's beam-induced background, produced with MARS15 by N. Mokhov:
 - ▶ one bunch crossing of 750-GeV μ^{\pm} beams with 2x10¹² μ /bunch.
- We have updated the CLIC detector geometry to accommodate MAP's machine-detector interface: the interaction region and two shielding cones in the forward regions optimized for a 1.5-TeV collider.

Detector overview

This is basically CLIC's detector + the shielding nozzles.

The tracking system

Vertex Detector (VDX)

- 3 double-sensor barrel layers:
 - \rightarrow at r = 3.1, 4.4, 5.8 cm;
 - ◆ 50-µm thick Si sensors;
- 3+3 double-sensor disks:
 - at $|\Delta z|$ = 16.0, 22.8, 29.6 cm;
 - ◆ 25-µm thick Si sensors.

Inner Tracker (IT)

- 3 barrel layers (100-µm thick):
 - at r = 12.7, 34.0, 55.4 cm;
- 7+7 disks (100-μm thick):
 - at $|\Delta z| = 52.4$, 80.8, 109.3, 137.7, 166.1, 194.6, 219.0 cm;

Outer Tracker (OT)

- 3 barrel layers (100-µm thick):
 - at r = 81.9, 115.3, 148.6
- **4+4** disks (100-μm thick):
 - ightharpoonup at $|\Delta z| = 131$, 161.7, 188.3, 219 cm.

Tracker muography

Tracker's sim-reco software

- Detector response:
 - full simulated with GEANT4.
- Hit reconstruction:
 - simple Gaussian smearing of the hit positions with different resolutions, assuming 25x25-μm² pixels in VDX and 50-μm pitch strips of various lengths in IT and OT.
- Pattern recognition and track finding:
 - conformal transformation of hit positions + inside-out Kalman-filter fit.
- As the closest detector to the beamline, the tracker is affected the most by the beam-induced background. The hit reconstruction and the tracking strategy need to be tuned to the muon collider conditions in order to preserve the tracker performance.

Timing of the tracker hits

- The time-of-arrival spread of the hits from the beam-induced bkg provides a powerful handle to mitigate their number:
 - we assume a time resolution of 50 ps (100 ps) for the 50-μm (100-μm) thick Si sensors;
 - "read out" only hits compatible with particles coming from the interaction point.

Tracker occupancy

Hit density due to the beam-induced background for one bunch crossing without and with the hit time window selection:

Tracking efficiency for IP muons

- The effect of the hit selection time window is negligible for muons coming from the nominal interaction point.
- Tracking efficiency for a muon gun sample with:
 - ► $0.1 \text{ GeV} < p_T < 10 \text{ GeV}, 0^{\circ} < \phi < 360^{\circ}, 8^{\circ} < \vartheta < 172^{\circ}.$

Next steps

- Ongoing developments to:
 - ▶ implement a more realistic simulation of the tracker readout that includes:
 - a segmentation of the Si sensors into pixels;
 - digitization of the pixel signals;
 - pixel clusterization and hit reconstruction.
 - ► find the most suitable tracking strategy for the high-occupancy environment at a muon collider.
- We are in contact with E. Brondolin, M. Petrič, and A. Sailer of the CLIC Collaboration, who we thank for their support and advice.