

Reconstruction of 4b jets event at a Muon Collider

Laura Buonincontri, Alessio Gianelle, Donatella Lucchesi, <u>Lorenzo Sestini</u> INFN-Padova

for

P. Andretto, N. Bartosik, L. Buonincontri, M. Casarsa, F. Collamati, A. Gianelle, D. Lucchesi, C. Riccardi, P. Sala, P. Salvini, L. Sestini, I. Vai

Muon Collider Workshop, 31-3-2020

Introduction

- We have already demonstrated that Higgs physics is possible at a Muon Collider https://arxiv.org/abs/2001.04431.
- We studied the measurement of the μ⁺μ⁻ → H(→bb) νν cross section and the determination of the Higgs coupling with b-quarks.
- We are now moving to the study of the $\mu^+\mu^- \to HH \nu \overline{\nu} \to b \overline{b} b \overline{b} \nu \overline{\nu}$ process.
- The goal is to determine the sensitivity of a Muon Collider experiment to the measurement of the Higgs self-coupling, using a full simulation.
- In this talk we want to show the progress on the double H simulation and analysis.
- We considered the \sqrt{s} = 3 TeV and \sqrt{s} = 10 TeV, studies are more advanced for the 3 TeV case.

Double Higgs events generation

- We have generated 1000 double Higgs events at NLO with Whizard.
- All NLO diagram contributions are considered, not only those with Higgs self-couling.
- Few examples:

Double Higgs events simulation and reconstruction

- Detector layout, simulation, tracks and calorimeter reconstruction described in the previous talks.
- The analysis is performed with the ILCsoft framework.
- At least for now Beam Induced Background is not considered.

Jets reconstruction

- We are using FastJet as reconstruction software.
- → Particle flow algorithm for tracks and calorimeter clusters selection.
- → k with R=0.5 as jet clustering algorithm.

- → Number of reconstructed jets per event.
- → Many events with less than 4 jets, especially in the 10 TeV case.
- → This is probably due to the acceptance (e.g. nozzle) and bb collimation.
- → A different reconstruction strategy is probably needed at 3 and 10 TeV cases.

HH → **bbb** kinematics

Higgs and b quarks are emitted in the forward region, at 10 TeV they are more forward with respect to 3 TeV

HH → **bbbb** kinematics

- → The two Higgs are almost back-to-back.
- The two b-quarks are collimated.

- → Jets at 10 TeV are more boosted along the z-axis with respect to 3 TeV.
- → The p_T distribution is compatible in the two cases.

7

b-jets reconstruction at 3 TeV

- From now on only the 3 TeV case is considered.
- → Transverse momentum of reconstructed jets.
- Matched and not-matched with true b-jets.
- Not-matched jets are generated by Initial State Radiation and Final State Radiation, or reconstruction artifacts.

- → Efficiency of b-jets reconstruction: 87%
- → Rate of not-matched jets: 27%
- → b-tagging and p_T cuts are necessary

Higgs reconstruction at 3 TeV

- ightarrow Minimization of the following figure of merit: $M^2 = (m_{ij} m_H)^2 + (m_{kl} m_H)^2$
- \rightarrow m_H is the nominal Higgs mass, m_H and m_{kl} are dijet invariant masses
- Reconstructed jets matched with true b-jets are used (other jets should be removed by b-tag)
- \rightarrow H1 is defined as the Higgs with the highest jets p_{τ} sum in the event, H2 is the second one.

First look at 3 TeV background

- Irreducible background: μμ → bbbbνν from electroweak or single Higgs processes.
- It is being generated with Whizard. In this talk $\mu\mu \rightarrow b\overline{b}H(\rightarrow b\overline{b})\nu\overline{\nu}$ at LO with Pythia 8.
- According to CLIC paper [https://arxiv.org/abs/1901.05897] after selection μμ → bbH(→ bb)νν is the dominant background at 3 TeV.
- At a 3 TeV Muon Collider we expect (considering just reconstruction efficiencies without BIB):
 - → in the order of 500 HH events
 - → in the order of 150 Hbb events

$$N = \sigma \in L$$

luminosity	4.4 · 10 ³⁴ cm ⁻² s ⁻¹
time	$4 \cdot 10^7 s$
σ(ΗΗ)	0.84 fb
ε(ΗΗ)	47%
σ(bbH)	0.39 fb
ε(bbH)	27%

bbH reconstruction at 3 TeV

- → Same selection and reconstruction strategy as for the signal
- $\rightarrow \text{ Minimization of } \quad M^2 = (m_{ij} m_H)^2 + (m_{kl} m_H)^2$
- In the comparison: reconstructed jets matched with true b-jets for HH signal, all reconstructed jets for background

bbH reconstruction at 3 TeV

- → Good signal/background separation in the mass space.
- → We should be able to remove most of the bbH background with a multivariate analysis.
- → These distributions may be smeared by the effect of the Beam Induced Background.

Analysis strategy and next steps

- Need to define a b-tagging strategy. How many tagged jets should we require?
- Measure the reconstruction and b-tagging efficiencies, including also the Beam-Induced Background effects.
- Study the full background.
- Train a discriminator to separate the signal from the background.
- Define an ad-hoc strategy for the 10 TeV case. Since b-quarks from H are more collimated, should we consider fat jets?
- The last steps will be the HH cross section uncertainty estimation and the Higgs selfcoupling sensitivity extrapolation.

Backup slides