MAP -muon source from protons

Introduction

- Muon-based Accelerator Physics
- MAP muon source and options
 - Proton source
 - Targetry
 - $\pi \rightarrow \mu$ collection
 - Cooling
 - Acceleration
 - Storage rings
- Muon based neutrinos
 - "nuSTORM"-Muon storage ring for neutrinos "neutrino factory"
- Future experiments and directions
 - Current experiments (g-2, mu2e, ...
 - Future experiments (Mu2e–II, mueγ, ...)

Demonstration of Cooling by the Muon Ionization Cooling Experiment-Nature 57, p. 53 (2020)

- Early concept (1983)
 - D. N., Part. Acc. 14, 75
- Updated graphics:

ABSORBER ACCELERATOR
FIGURE 1 Sketch of "ionization cooling" principle

Experimental Result (2020)

Recent Research

- First rf acceleration of muons
 JPARC MUSE rfq (5 → 89keV)
 324 MHz
 - Phys. Rev. Accel. Beams 21, 050101 (2018)
- >First use of muon cooling to improve
- operational intensity (g-2 exp, D. Stratakis et al., 2019-LDRD)
 - B₄C or poly wedge
 - Increases useful μ's by 8%, reduces background by ~30%

MAP Program

- MAP developed ~detailed designs for $\mu^+ \mu^-$ colliders
 - Almost complete "feasibility study"
 - down-selecting
 - Not cheap ...
 - In serious danger of succeeding ...
 - Too ambitious, too risky for P5
- Go through MAP design
 - Discuss variants and potential improvements

03/12/2020

Muon Colliders: MAP Scenario Overview

Proton Driver

Short, intense proton bunches

4 MW power

MAP: 8 GeV Linac →

PIP-II + PIP-III RCS Could be better

Target

Produce pions
Collect and cool muons from pion
decay

Cooling

Single pass →
Ring coolers,
Improve final cooling
PIC cooling ??

Acceleration to collision energy

Collider rings for 0.125,1.5,3, 6 TeV designed

MAP Proton Driver

- 8 GeV Linac -4MW 15 Hzmatches Project X
- Inject into ring 1
 - Accumulate-4bunches
- Bunch to <3ns in ring 2</p>
- Extract into 4 transport lines on to target, using Combiner

- > Problems:
- 8 GeV energy too small ?
 - Space charge too large
 - 3 extra transport lines onto target?
 - 2 Rings ???
 - Lower power may be better
 ...

Other proton driver Solutions

- Rapid-cycling synchrotron or FFAG
 - Low-harmonic naturally obtains intense bunches
 - •Compression to <~1m possible

•FFAG could be better than RCS

Examples
 JPARC 3 GeV RCS (25 Hz, 2 bunches, 1MW
 JPARC MI, 30 GeV~1Hz, 8 bunches 0.75 → 1+ MW

- •CERN PS
- 1.2 Hz, 8 bunches 0.17 MW

Targetry system

- Baseline puts short p
- bunches on mercury-jet target
- ▶ In ~20 T solenoid
 - 20 → ~2T taper
- Captures both signs
- Other targets
 - Hg leaks ...

Bunching and phase rotation system

- Takes a short p bunch off target
 - ∘ 450→325 MHz
 - Forms into string of 325
 MHz bunches (21)
- Initially Considered induction linac
 - → 1 bunch
- ▶ Also 350→200 Mhz
 - ~12 bunches
 - Neutrino Factory

Cooling Systems

- Baseline Cooling system is absorbers +rf within solenoids
 - Much of the cooling is actually used for bunch combination
- Could it be improved?? It's too long
 - ~1km linac, ~250 cells

Inefficient – cooling rate $g_{eff} < 0.2$

Cools only to ~0.0002 m Final cooling needs improvement ...

Cooling

Bunch Merge

Final Cooling

> Options:

Ring coolers ?? to reuse cooling rf, absorbers

Helical or PIC cooling (Derbenev) ?

Li lens or Quad or plasma Lenses?

Rf choices

Bunch Merge

- Baseline Cooling system has a
- > 21 → 1 bunch merging system
 Includes 7 trombones
 - Alternative rf based system could be used
 - DN & C . Yoshikawa

Cooling follows

FIG. 3. Merge scheme.

Acceleration Systems

- Linac to ~GeV, RLA to 100 GeVAt high energy RLA is expensive
- Baseline high energy version is hybrid RCS

•
$$\pm 2 T + 8 T SC$$

- Awkward lattice structure with large energy-dependent orbit
 - Cycling is easy for E > TeV

> FFAG lattices ?

- Super conducting with coil placements determining field profiles
 - Many turns of acceleration within same magnet
 - Vertical FFAG ?- S. Brooks

Collider Rings

- Some excellent lattice designs
 - •1.5, 3, 6 TeV
 - Muon Decay background mitigation not fully solved

- For very high energy radiation damping will help
 - •50+ TeV?

Neutrino Factory

Start with low-energy muon bunches

φ-E rotation and cooling

Accelerate to X GeV and store

ν-beams from μ decay provide quality beam

Adds well-defined v_e beam

High Energy to 14 TeV at LHC

- $\mu^+\mu^-$ site-filler in LHC tunnel
- muon source:
 - CERN PS-based proton source + cooling
 - MAP 8GeV 2MW p + cooling
 - threshold 45 GeV e⁺ ring + e⁻ production
 - LEMMA- Boscolo et al. -no cooling

Separate collider ring preferred

Shiltsev & Neuffer, IPAC 18

Parameter	"PS"	"MAP"	"LEMC"
Avg. luminosity	$1.2 \cdot 10^{33}$	$3.3 \cdot 10^{35}$	$2.4 \cdot 10^{32}$
Beam δE/E	0.1%	0.1%	0.2%
Rep rate, Hz	5	5	2200
$N_{\mu}/bunch$	1.2 · 1011	2·10 ¹²	4.5×10 ⁷
n _b	1	1	1
$\epsilon_{t,N}$ mm-mrad	25	25	0.04
β [*] , mm	1	1	0.2
σ*(IR), μm	0.6	0.6	0.011
Bunch length, mm	0.001	0.001	0.0002
μ production source	24 GeV p	8 GeV p	45 GeV e ⁺
p or e/pulse	6·10 ¹²	2 · 1014	$3 \cdot 10^{13}$
Driver beam power	0.17MW	1.6MW	40 MW
Acceleration, GeV	1-3.5, 3.5-7 RCS	1-3.5, 3.5-7 RCS	40 GV, RLA 20 turn
N rad. (unmitigated)	0.08	1.5	0.015 mSv/yr 16

3 Laws of Beam Physics

- 1. Beam Phase Space cannot decrease
 - Liouville's theorem cannot be violated
- 2. Beam Phase Space increases
 - bunch combination is inefficient

3 Laws of Beam Physics

1. Beam Phase Space cannot decrease

Liouville's theorem cannot be violated

2. Beam Phase Space increases

bunch combination is inefficient

3. Break the 1st Law wherever possible

- 1. radiation damping
- 2. stochastic cooling- van der Meer ... Thorndahl
- 3. electron cooling
- 4. ionization cooling -"muon cooling"
- 5. charge-exchange injection
- 6. "stochastic injection" ($\pi \rightarrow \mu \text{ decay}$)
- 7. ??