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Ionization Cooling

 Reminder:
 Proton-based muon collider uses ionization cooling
 Reduce muon beam emittance → increased luminosity
 Key technology

 MICE has demonstrated ionization cooling
 What is left to do?

 Lots!
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Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials

Ionisation Cooling

MUONSRF
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 Higher energy particles take wider orbit
 Higher energy particles pass through 

more material
 Higher energy particles lose more 

momentum
 End up with wider beam with smaller 

momentum spread
 Results in “emittance exchange”

 Emittance moves from longitudinal to 
transverse

 Results in reduction in longitudinal 
emittance and transverse emittance

Emittance Exchange
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Ionization Cooling
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Technology

 A few different lattice technologies
 Helical solenoid or solenoid + dipole focussing
 Mostly few 100 MHz RF
 Few MHz induction linac in final cooling

LiH/lH
2

Absorber

RF
Cavity

Solenoid
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Potential Issues

 Cooling tests should address technical issues
 4D cooling

 Focussing, multiple scattering and dE/dx
 6D cooling

 Energy straggling
 Novel optics

 “Tilted solenoid” or “solenoid and dipole” optics
 Helical optics

 Bulk effects
 Space charge
 Absorber degradation
 Bulk ionization of material
 Beam-induced plasma loading in High Pressure RF

 Specific engineering issues
 Magnets
 Forces
 RF voltages
 etc
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Transverse (4D) Cooling

 MICE principally addressed transverse cooling
 Cooling in regime between 1000 micron - 10000 micron
 Optical beta ~ 50 – 100 cm
 Momenta 140 – 240 MeV/c
 Good agreement with simulation

 Some analysis ongoing, but don’t expect surprises

MICE Collaboration, 
Nature volume 578 (2020)
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Ionization Cooling
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6D Cooling

 MICE did not study longitudinal cooling much
 Wedge absorber was studied; analysis is in progress
 Limited resolution in energy and time
 Limited capacity to generate dispersive beams

 Physics is reasonably well understood
 Energy loss and straggling is well known
 Properties of RF and dispersion are well known
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Space Charge

 Space charge
 Space charge becomes 

significant for the lowest 
emittance beams

 Suspect longitudinal space 
charge causes loss

 Deserves more simulation
 Supported by experiment

Stratakis et al, TUPFI088, IPAC13
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Beam induced plasma loading

 Some lattices call for high pressure gas to fill RF cavities
 Suppresses RF breakdown enabling higher RF voltages
 Ionisation of the gas by beam; ions load the cavity

 Tested in Fermilab (2013)
 Measured less loading (dw) than expected

Chung et al, PRL 111 184802, 2013
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Bulk ionization of material

 Beam ionizes material
 Subsequent beams perturbed by ionization “wake”
 May enhance density effect and energy loss
 Not expected to be significant for muon collider

 But needs checking

Huang et al, TUA1MCIO02, Proc COOL09, 2009
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Specific Engineering Issues

 Many proposed cooling channels are quite demanding
 High magnetic fields
 RF voltage

 Further hardware R&D is required
 Magnet development
 Engineering prototypes
 Etc

 Likely can be done without beam



 15

Potential Beam Tests

 Single pass (like MICE)
 Single pass through linac and absorber
 Aim for higher intensities than MICE
 Aim for tighter focussing

 Recirculating (i.e. ring)
 Higher average intensity
 Bigger signal/easier diagnostics

 Particle Species
 Protons

 Intensities comparable to MC bunch intensity (1012 mu/bunch)
 Different energy loss/scattering characteristics
 Hadronic interactions

 Muons
 Lower intensity
 Correct physics

 Electrons?
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Recirculating Proton example

 Aim for a proton ring with 
acceptance > equilibrium 
emittance

 Longer beam lifetimes
 Consider transverse only
 What are the lattice properties 

required for transverse 
containment?

 Bethe Bloch energy loss model
 Moliere scattering model
 Linear optics

 Desire
 Tight focus in both planes
 Good acceptance

 Low z foil e.g. Beryllium

Equilibrium emittance vs optical β
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Solenoidal Ring

Number of Cells 12 Foil thickness 10 micron
Radius 3 m Foil material Be
Energy range 6-15 MeV Voltage/turn 250 kV
Solenoid field 1.6 T RF phase 11 degrees
Dipole field 0.68 T RF freq 2.452 MHz
Magnet Length 500 mm
Bore Radius 400 mm

Foil

Solenoid+
Dipole

RF
Cavity
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Optics

 Totally coupled optics
 Solenoid couples x and y
 (RF and dispersion couples 

time)
 Split analysis into 2D 

transverse eigenspaces
 Follow Parzen formula
 Develop beta function in the 

eigenspace
 Also consider 4D beta

 Large tune spread
 Inherent non-linearities in 

solenoid (and dipole) fringe 
field 

β0

β1

βt
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Acceptance (eigenspace)

A0

A1

A0

A1
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Acceptance (projected to physical space)
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 Now add in the foil and RF
 12 stations = 10 micron foil and 250 kV
 Start with 0 emittance beam (longitudinal and transverse)

Full tracking

0 mm 20 mm10 mm 0 mm 20 mm10 mm
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Full tracking

 Now add in the foil and RF
 12 stations = 10 micron foil and 250 kV



 23

 Fit to (s is station) using ε = p0[1-exp(p1(s-s0))]
 Associate emittance cut off to transverse loss
 Associate emittance decay with longitudinal loss

Transverse Emittance

0 mm 10 mm

P
0
: 0.235 mm

P
1
: 0.126e-3

Transverse
losses

Longitudinal
 losses

Cell number

Total foil thickness
20 mm
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Full tracking

1000 turns 2000 turns0 turns

0 mm 20 mm10 mm

 Why is there loss even at the very beginning?
 High angle Coulomb scatters?
 Hadronic interactions?
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How well did we do?

 How well does such a ring test phyics?
 4D and 6D cooling – okay; would be nice to get to smaller β
 Novel optics

 Tests “solenoid and dipole” optics
 Does not test helical dipole optics

 Bulk effects
 Space charge – we should be able to get to space charge limit
 Absorber degradation – we should be able to study windows/etc
 Bulk ionization of material

 spot size is ~ 2000 mm2, would like ~ 1 mm2

 Beam-induced plasma loading in High Pressure RF
 Can’t put high pressure RF in this lattice

 Specific engineering issues
 Deal with in dedicated engineering prototypes
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Stopping Target Proton Accelerators

 Most proton accelerators are used for secondary particle 
production

 SNS, ISIS, ESS → neutron spallation (and muons)
 PSI cyclotron, TRIUMF → muon production (and neutrons)
 Proposals for radioisotope production

 Accelerate a very intense beam to high energies
 Stop the beam on a target
 Space charge effect is stronger at low energy

 Accumulate beam at high energy or use CW beam
 Improve yield by using very high energy particles
 But:

 Imprecise – all proton energies are present in target
 Expensive – acceleration of protons to high energy requires 

challenging, multistage accelerators
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Internal Target Model

 Recirculate protons through a thin target
 Use RF cavities to re-energise the protons

 Precise choice of proton energy in the target
 More efficient use of protons

 Lower currents required, fewer losses
 Potentially large amplification of beam power

 Applications in
 Neutron production
 Energy amplifier
 Isotope production

 Nice to have a shorter term goal 
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Conclusions

 A significant amount of work has been done to validate 
ionization cooling

 A few things left to check
 But no expected physics problems

 Example test proton ring could be used to study
 6D cooling
 Solenoid-dipole optics
 Space charge effects
 Long term stability of absorber material

 But can’t study
 Plasma loading in RF cavities filled with high pressure gas
 Low emittance (optical beta) optics/cooling
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