Frictional Cooling for a Muon Collider

Allen Caldwell
MPI f. Physik, Munich
CERN Muon Collider Workshop
April 1, 2020

Contributors: Raphael Galea, Columbia University

Daniel Kollar, Max-Planck-Institut

Claudia Büttner, Max-Planck-Institut

Stefan Schlenstedt, DESY-Zeuthen

Halina Abramowicz, Tel Aviv University

+ Emily Alden, Christos Georgiou, Daniel Greenwald, Laura Newburgh, Yujin Ning, William Serber, Inna Shpiro (students)

What is the Problem?

Muons decay with lifetime 2.2 µs

- → need a multi MW source
 - large starting cost
- → large experimental backgrounds
 - lots of energetic e[±] from μ decay
- → limited time for cooling, bunching, and accelerating
 - need new techniques
- → limitations due to neutrino induced radiation
 - cannot be shielded

μ beam production

Drift region for π decay \approx 30 m

beam description using 6D emittance

(6D phase space of the beam)

$$\varepsilon_{6D,N} = \frac{\sigma_x \sigma_y \sigma_z \sigma_{\rho_x} \sigma_{\rho_y} \sigma_{\rho_z}}{(\pi \, mc)^3}$$

after drift estimate

rms: x,y,z 0.05, 0.05, 10 m p_x,p_y,p_z 50, 50, 100 MeV

 $\epsilon_{\rm 6D,N} \approx 1.7 \times 10^{-4} \ (\pi m)^3$

required

 $\epsilon_{\rm 6D,N} \approx 1.7 \times 10^{-10} \ (\pi m)^3$

COOLING

Frictional cooling Idea

- bring muons to kinetic energy
 T where dE/dx increases with energy
- apply constant accelerating *E* field to muons resulting in equilibrium energy
- big issue how to maintain efficiency
- similar idea first studied by Kottmann et al. at PSI

Frictional cooling

Problems/Comments

- large dT/dx at low T
 - → low average density of stopping medium ⇒ gas
- apply $\vec{E} \perp \vec{B}$ to get below the dE/dx peak $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \frac{dT}{dx} \vec{v}_0$
- **slow** μ 's don't go far before decaying $d = 10 \text{ cm} \times \sqrt{T}$ with T in eV
 - → sideward extraction (E⊥B)
- μ+ problem muonium formation dominates over e-stripping except for He
- μ- problem muon capture at low energies; σ not known
 - ⇒ keep *T* as high as possible

Neutralization

$H^{+} + He \rightarrow H + He^{+}$ 10-16 10^{-17} Section (cm²) 10-19 10-20 10-21 10-22 10-23 Cross 10^{-24} 10-25 10-26 Energy (eV/amu)

From Y. Nakai, T. Shirai, T. Tabata and R. Ito, *At. Data Nucl. Data Tables* **37**, 69 (1987)

Stripping

For μ , energy lower by M_{μ}/M_{P}

Frictional Cooling: particle trajectory

** Using continuous energy loss

Muon collider scheme based on frictional cooling

Target System

- cool μ + & μ at the same time
- calculated new symmetric magnet with gap for target

Full MARS target simulation, optimized for low energy muon yield: 2 GeV protons on Cu with proton beam transverse to solenoids (capture low energy pion cloud).

Target & Drift Optimize yield

- $\begin{array}{ll} \bullet \text{ Optimize drift length for} \\ \mu \text{ yield} \end{array}$
- Some π 's lost in Magnet aperture

Phase Rotation

- First attempt simple form
- Vary t₁,t₂ & E_{max} for maximum low energy yield

Cooling cell simulation

He gas is used for μ^+ , H₂ for μ^- .

- Individual nuclear scatters are simulated – crucial in determining final phase space, survival probability.
- Incorporate scattering cross sections into the cooling program
- •Include μ- capture cross section using calculations of Cohen (Phys. Rev. A. Vol 62 022512-1)
- ·Electronic energy loss treated as continuous

Scattering Cross Sections

• Scan impact parameter and calculate $\theta(b)$, $d\sigma/d\theta$ from which one can get

λ_{mean free path}

- Use screened
 Coulomb Potential (Everhart et. al. Phys. Rev. 99 (1955) 1287)
- Simulate all scatters
 θ>0.05 rad
- Simulation accurately reproduces ICRU tables for protons

Barkas Effect

- •Difference in μ^+ & μ^- energy loss rates at dE/dx peak
- •Due to charge exchange for μ +
- •parameterized data from Agnello et. al. (Phys. Rev. Lett. 74 (1995) 371)
- •Only used for the electronic part of dE/dx

Simulation of the cooling cell

Oscillations around equilibrium define the emittance

Resulting emittance and yield

Muon beam coming out of 11 m long cooling cell and after initial reacceleration:

rms:
$$x,y,z$$
 0.015, 0.036, 30 m p_x,p_y,p_z 0.18, 0.18, 4.0 MeV $\epsilon_{6D,N} = 5.7 \times 10^{-11} \text{ (πm)}^3$

Results for μ^+ , still working on μ^-

 \rightarrow better than required 1.7×10-10 (π m)³

Yield ≈ **0.002** μ per **2 GeV proton** after cooling cell

→ need improvement by factor of 5 or more