

Theoretical model for the evaluation of the thermal stability and thermal stress of solid targets in a low emittance muon collider

Roberto LI VOTI and Gianmario CESARINI Sezione INFN Roma 1 - Sapienza Università di Roma – Dipartimento SBAI

Istituto Nazionale di Fisica Nucleare

Acknowledgments

In collaboration with

A. Variola, F. Anulli, G. Cavoto, F. Collamati, M. Bauce

(INFN Sezione di Roma1)

M. Antonelli, M. Boscolo, O. Blanco, A. Ciarma

(INFN - LNF),

Outline

- Introduction of the LEMMA project
- Numerical simulation of the deposited energy onto the target
- Temperature behaviour of the thermal parameters of Beryllium and Carbon
- Temperature field after a single bunch temperature temporal evolution
- Target steady state temperature
- Thermal stress and quality factors to prevent target fractures
- Conclusions

Introduction of the LEMMA project

Low EMittance Muon Accelerator

INFN institutions involved: LNF, Roma1, Pd, Pi, Ts, Fe Universities: Sapienza, Padova, Insubria Contributions from: CERN, ESRF, LAL, SLAC

- A $\mu^+\mu^-$ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 ms (at rest)

Muon source

e⁺e⁻ annihilation - positron beam on target : very low emittance and no cooling needed, baseline for our proposal

e⁺ on standard target (including crystals in channeling) \rightarrow Need Positrons of $\approx 45 \text{ GeV}$

Ideally muons will *copy* the positron beam

Methodological approach

Deposited energy density Temperature field calculation (space/time) **Stress calculation** Von Mises criterion **Safety factors** Check of the safety thresholds

Target size and discretization in the FLUKA code

Pulse duration $\tau : 10 \text{ ps}$

Spot size a: three case studies (10, 50, 140) µm

Beryllium thickness: 3 mm

Beryllium radius: 5 cm

Radial simmetry in the distribution of deposited energy: use of cylindrical coordinates $(r, \varphi=1)$ and discretization along z.

Energy density deposited on the target

Methodological approach

Deposited energy density Temperature field calculation (space/time) **Stress calculation** Von Mises criterion **Safety factors** Check of the safety thresholds

Numerical model for temperature variation inside the material

Basic model equation

$$\Delta T_{i,j}' = \Delta T_{i,j} + \left(\frac{W_{i,j} + \Phi_{net}}{V_{i,j}}\right) \frac{\Delta t}{\rho c_p}$$

Convergence condition (Fourier number F0 = Dt/L²
$$\leq$$
 ½): $\Delta t < \frac{min(\Delta r^2, \Delta z^2)}{4D_{max}}$

■ External nodes including boundary conditions

i scan on r, j scan on z

 $\Delta T_{i,j}$ ' temperature at time t', $\Delta T_{i,j}$ at time t

 $\mathbf{W_{i,j}}$ power deposited in element i,j

 Φ_{net} heat flow exchanged by the element i,j in the time unit

 Δt time lapse

V element volume i,j

p density

 $C_{\mathbf{p}}$ specific heat

D thermal diffusivity

Muon Colllider Meeting

02/04/2020

Page 10

Temperature simulations with constant thermal parameters: linear model – surface temperature rise

Features of the benchmark positron beam

Symbol	Description	Reference Value
а	Gaussian beam spot size	300 μm
τ	bunch duration	10 ps
N_{part}	positron number	$3 \cdot 10^{11}$
N_{pulses}	number of consecutive bunches	100
T_{pulse}	time between two bunches	400 ns
Theating	total time of N_{pulses}	40 μs
T_{rep}	repetition time of the N_{pulses} sequence	0.1 s

Numerical simulation of the deposited energy onto the target

For this purpose Monte Carlo simulations have been performed with FLUKA both for Beryllium and Carbon (Low-Z materials). The figures show the heat deposited by a single bunch of $3 \cdot 10^{11}$ e⁺ as a function of the radial distance from the center.

Temperature temporal evolution in the beam spot center after a sequence of bunches

After 100 bunches = $40 \mu s$

Asymptotic temperature increase: Steady State Temperature

Obtained from the energy balance between the deposited energy and the dissipation by *thermal* radiation

$$\Delta T = \sqrt[4]{T_{amb}^4 + \left(\frac{a^2 \cdot L}{r^2 + r \cdot L}\right) \frac{C_{\text{max},a} \cdot N_{part} \cdot N_{pulses}}{\varepsilon \cdot \sigma_B \cdot T_{rep}}} - T_{amb}$$

 ϵ emissivity, σ_B Stefan-Boltzmann constant, T_{rep} pulse train repetition period, $C_{max,a}$ deposited energy density peak by the Fluka data

Comparison between the numerical model and the model based on the energy balance for the Beryllium target

Time, s

Comparison between the numerical model and the model based on the energy balance for the Carbon target

Energy Balance Model and Steady State Temperature

Steady State Temperature

Beryllium target

radius r = 5 cm, thickness L = 3 mm;

Beam spot size: $a = 300 \mu m$;

Number of positrons: $N = 3 \cdot 10^{11}$

Cooling time: $T_{Rep} = 0.1 \text{ s.}$

Steady state temperature increase: $\Delta T_{SS} = 185.5 \text{ K}$

Melting point: 1551 K

Carbon target

radius r = 5 cm, thickness L = 1 mm;

Beam spot size: $a = 300 \mu m$;

Number of positrons: $N = 3 \cdot 10^{11}$

Cooling time: $T_{Rep} = 0.1 \text{ s.}$

Steady state temperature increase: $\Delta T_{SS} = 102.5 \text{ K}$

Melting point: 3923 K

Methodological approach

Deposited energy density Temperature field calculation (space/time) **Stress calculation** Von Mises criterion **Safety factors** Check of the safety thresholds

Stress Relations

Radial Stress

$$\sigma_{rr} = \frac{E(r)}{1 - \nu} \left[\frac{1}{R^2} \int_0^R \alpha T(r, t) r dr - \frac{1}{r^2} \int_0^r \alpha T(r, t) r dr \right]$$

Hoop Stress

$$\sigma_{\theta\theta} = \frac{E(r)}{1 - \nu} \left[\frac{1}{R^2} \int_0^R \alpha T(r, t) r dr + \frac{1}{r^2} \int_0^r \alpha T(r, t) r dr - \alpha T(r, t) \right]$$

Axial Stress

$$\sigma_{zz} = \frac{E(r)}{1 - \nu} \left[\frac{2}{R^2} \int_0^R \alpha T(r, t) r dr - \alpha T(r, t) \right]$$

Elastic properties: Beryllium

Elastic properties: Carbon

Temperature (K)

Elastic modulus of pyrolytic graphite

Fig. 8. Ultimate tensile strength of pyrolytic graphite parallel to basal planes in comparison with other high-temperature Muon Colllider Meetingaterials 4/2020

Methodological approach

Deposited energy density Temperature field calculation (space/time) **Stress calculation Von Mises criterion** Safety factors Check of the safety thresholds

Typical Stress-Strain Diagram

Von Mises Equivalent Stress and Safety Factor

Von Mises Equivalent Stress

$$\sigma_e = \sqrt{\frac{(\sigma_{rr} - \sigma_{\theta\theta})^2 + (\sigma_{rr} - \sigma_{zz})^2 + (\sigma_{\theta\theta} - \sigma_{zz})^2}{2}}$$

$$\frac{\sigma_y}{\sigma_e} > 1$$

Safety factor and threshold for Beryllium target

$$\frac{\sigma_{uts}}{\sigma_e} > 2$$

Safety factor and threshold for Carbon target

Methodological approach

Deposited energy density Temperature field calculation (space/time) **Stress calculation** Von Mises criterion **Safety factors Check of the safety thresholds**

Stress and Safety factors – Beryllium – Spot 300 um

1×10⁻⁷ 1×10⁻⁶ 1×10⁻⁵ 1×10⁻⁴ 1×10⁻³

Time (s)

0.1

Time (s)

0.01

0.1

 -2.5×10^{3}

1×10⁻⁷ 1×10⁻⁶ 1×10⁻⁵ 1×10⁻⁴ 1×10⁻³

Stress and Safety factors – Carbon – Spot 300 um

Time (s)

Conclusions

- ☐ We used the numerical model (FDTD) in order to evaluate the spatial and temporal gradients of temperature due to a single bunch or to sequence of bunches that can cause thermomechanical stresses and therefore damage or fractures of the target;
- ☐ We used the model based on the energy balance to obtain the steady state temperature and evaluate its sustainability both for a static configuration of the target.
- ☐ Future perspectives: characterization of the thermo elastic properties of solid targets. Real experiments by monitoring the temperature with an infrared camera

Thanks for your attention