

# Update on the MS10 sextupole lattice study

F. Plassard, R. De Maria Thanks to: M. Giovannozzi, S. Kostoglou, N. Karasthatis, F. Van der Veken

WP2 Meeting 25/02/2020

#### OUTLINE

Recall of the 4 sextupole layout options proposed for HL-LHC

□ Summary of the main advantages / drawbacks

DA comparison after phase optimization

DA comparison including weak-strong beam-beam interactions

### **Recall of the sextupole layout options**



### **Properties of the proposed alternative options**

| Optics                | Pros                                                                                                                                                        | Cons                                                                                                                                |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Baseline              | <ul> <li>Gain of 20% of sextupole strength</li> <li>Best DA solution for HL-LHC</li> </ul>                                                                  | <ul> <li>Installation of 4 additional sextupoles (per Beam)</li> <li>Important hardware modification (time &amp; cost)</li> </ul>   |  |  |
| No MS10<br>(LHC-like) | <ul> <li>Same as LHC → No intervention required</li> </ul>                                                                                                  | <ul> <li>Large geometrical aberrations<br/>from the main sextupoles</li> <li>Important detrimental impact<br/>on DA</li> </ul>      |  |  |
| No MS14F              | <ul> <li>No installation required (2 sext.<br/>disconnected per Beam)</li> <li>Better DA solution than LHC<br/>configuration</li> </ul>                     | • Important change in optics<br>$(\Delta \mu_{y}^{IR1\&5} = \frac{-\pi}{2})$<br>• New squeeze optics                                |  |  |
| No MS14F<br>& MS14D   | <ul> <li>No installation required (4 sext.<br/>Disconnected per Beam)</li> <li>No change in linear optics</li> <li>Best DA solution without MS10</li> </ul> | <ul> <li>+20% sext. Current required</li> <li>Leakage of vertical chromatic</li> <li>β-beating, Beam 1 in IR3 ,6 &amp; 7</li> </ul> |  |  |

#### (see WP2 meeting 158<sup>th</sup> for more details)

### DA comparison after phase $\Delta\mu^{IP1\rightarrow 5}_{{\cal X},{\cal Y}}$ optimization

- Phase optimization between IP1 & IP5 allowing partial compensation of some fourth and higher order resonances in order to improve DA
- While some RDTs are well corrected others increase...
- □ The mechanism behind the DA reduction is too complex to target some specific resonances for the correction → optimize the phase directly by observing the DA



### DA comparison after phase $\Delta \mu_{\mathcal{X},\mathcal{Y}}^{IP1 \rightarrow 5}$ optimization

- □ Phase optimization between IP1 & IP5 allowing partial compensation of some fourth and higher order resonances in order to improve DA
- □ Phase scan performed without imperfections for each lattice options and both beams
- □ The optimal phase setup **takes into account the optics constraints** for HL-LHC especially for machine protection



### DA comparison after phase $\Delta\mu_{\mathcal{X},\mathcal{Y}}^{IP1\rightarrow5}$ optimization

□ The optimal phase setup **takes into account the optics constraints** for HL-LHC especially for machine protection

□ The parameters after phase optimization are within the constraints for IR6 region

| Param. B1 / B2                               | Target values              | Baseline      | No MS14F      | No MS14F & MS14D |
|----------------------------------------------|----------------------------|---------------|---------------|------------------|
| $\Delta \mu_{x,\text{MKD-TCDQ}}$ [°]         | $90^{\circ} \pm 4^{\circ}$ | 86.3 / 93.6   | 91.5 / 93.6   | 86.3 / 93.6      |
| $eta_y^{ m TCDS}$ [m]                        | $\geq 200$                 | 238.3 / 260.6 | 283.2 / 200.0 | 238.3 / 271.0    |
| $eta_x^{ m TCDQ}$ [m]                        | -                          | 736.4 / 473.3 | 513.9 / 460.0 | 736.4 / 474.6    |
| $eta_y^{ m TCDQ}$ [m]                        | $\geq 145$                 | 180.5 / 145.0 | 145.0 / 176.2 | 180.5 / 145.0    |
| $ \dot{\mathrm{D}}_{x,\mathrm{TCDQ}} $ [m]   | -                          | 0.6/0.4       | 0.02 / 0.38   | 0.5 / 0.42       |
| Gap <sub>TCQD,min</sub> [mm]                 | $\geq 3$                   | 4.0 / 3.05    | 3.3 / 2.99    | 4.0 /3.05        |
| $eta_x^{	ext{TDE}}$ [km]                     | $\geq 4$                   | 6.37 / 4.92   | 5.06 / 4.83   | 6.37 / 4.93      |
| $\beta_y^{\text{TDE}}$ [km]                  | $\geq 3.2$                 | 3.36 / 7.23   | 8.2 / 6.33    | 3.36 / 7.72      |
| $(eta_xeta_y)_{	ext{TDE}}^{rac{1}{2}}$ [km] | $\geq 4.5$                 | 4.62 / 5.98   | 6.44 / 5.53   | 4.62 / 6.17      |
| $ \Delta \mu_{x,\text{MKD-TCT,IP1}} $ [°]    | $\leq 20$                  | 19.8 / 18.8   | 9.8 / 18.6    | 5.0 / 19.6       |
| Q5.L6 [T/m]                                  | 160                        | 163 / -164    | 160 / -162    | 163 / -165       |
| Q5.R6 [T/m]                                  | 160                        | -159 / 151    | -161 / 151    | -159 / 152       |

### DA comparison after phase $\Delta\mu^{IP1\rightarrow 5}_{{\cal X},{\cal Y}}$ optimization

- **DA simulated for 10^5** turns over 7 angles including field imperfections (60 seeds) and with  $I_{MO}$ =-570 A
- DA is clearly improved after phase optimization even when field errors are included



DA after  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization

BASELINE

DA **before**  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization

DA after  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization



No DA improvement or large degradation after phase optimization in the case of the Baseline when beam-beam is included

**D** Both show a **small tune area above the 6o target** close to the coupling lines

No MS10

DA **before**  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization

DA after  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization



Clear DA improvement after phase optimization in the case of the No MS10 when beam-beam is included

**Small tune area** above the 6o target close to the coupling lines after optimization

No MS14F

DA **before**  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization

DA after  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization



Clear DA improvement after phase optimization in the case of the No MS14F when beam-beam is included

**Small tune area** above the 6o target close to the coupling lines after optimization

No MS14F & MS14D

DA **before**  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization

DA after  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization



Clear DA improvement after phase optimization in the case of the No MS14F & MS14D when beam-beam is included

**3** Small tune area above the 6σ target close to the coupling lines after optimization

#### DA comparison with beam-beam after optimization



### DA comparison with beam-beam after optimization



### DA comparison for different intensity and crossing angle

HL-LHC v1.3 DA at collision from *IPAC18 paper MOPMF041*  $(xing=250\mu rad \& I=1.2 \times 10^{11})$ 

Min DA HL-LHC v1.3,  $I = 1.2 \times 10^{11}$  ppb,  $\beta^* = 15$  cm ε=2.5μm, Q<sup>'</sup>=15, I<sub>MO</sub>=-570A

HL-LHC v1.4 DA at collision  $(xing=295\mu rad \& I=2.2 \times 10^{11})$ 



Comparable tune scan for the HL-LHC for (xing=250 $\mu$ rad & I=1.2 $\times$  10<sup>11</sup>) and for  $(xing=295\mu rad \& I=2.2 \times 10^{11})$  on the Baseline optics

### Conclusions

- DA comparison between 4 different sextupole lattices proposed for HL-LHC including the impact of field imperfections and weak-strong beam-beam effects
- □ The phase advance between IP1 and IP5 has been optimized for each error-free lattice with the goal of maximizing DA
- □ The positive impact of the  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization on the DA can be important even when adding field imperfection or by including beam-beam effects
- □ After  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization the LHC-like sextupole configuration (or No MS10) seems to be a viable option for HL-LHC
- The No MS14F & MS14D is a robust alternative as the DA is comparable to the Baseline (with MS10) before and after  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization but requires to push the strength of the strong defocusing sextupole to 95% of their max current to keep chromatic β-beating to the same level

### BACKUP

### **Properties of the proposed alternative options**



|                                                                     | Baseline                                   | No MS10                                    | No MS14F                                         | No MS14F &<br>MS14D                                           |
|---------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| Horizontal chrom. β-beating<br>(Beam 1)<br>IP 1/2/5/8<br>IP 3/4/6/7 | 0.6/ 0.005/ 1.0/ 1.7<br>0.9/ 0.4/ 1.8/ 1.1 | 0.8/ 0.003/ 1.3/ 1.7<br>0.9/ 0.3/ 1.2/ 1.5 | 0.2/ 0.3/ 1.8/ 0.8<br>1.5/ 2.0/ 1.8/ 2.4         | 0.1/ 0.5/ 0.9/ 2.2<br>1.2/ 1.0/ 0.5/ 2.2                      |
| Vertical chrom. β-beating (Beam<br>1)<br>IP 1/2/5/8<br>IP 3/4/6/7   | 0.3/ 0.7/ 0.8/ 1.9<br>0.7/ 0.5/ 2.4/ 0.2   | 1.4/ 2.3/ 2.5/ 2.2<br>2.4/ 1.4/ 3.6/ 3.0   | 2.3/ 0.08/ 0.5/ 2.7<br>0.3/ 0.8/ 3.0/ <b>4.2</b> | 3.7/ <b>4.0/ 4.6/</b> 2.8<br><b>4.2/</b> 1.0/ <b>6.4/ 5.8</b> |

### **Properties of the proposed alternative options**

Increase the current of the defocusing strong sextupole in **R5,L1,R1** to **95% of the maximum strength** (instead of 90%) restore similar chromatic-β beating as Baseline





## DA comparison before phase $\Delta\mu^{IP1\rightarrow 5}_{\mathcal{X},\mathcal{Y}}$ optimization

**DA simulated for 10^5** turns over 7 angles including field imperfections (60 seeds) and with  $I_{MO}$ =-570 A



DA **before**  $\Delta \mu_{x,y}^{IP1 \rightarrow 5}$  optimization