Kt-factorization calculations for D and B meson production using a variable-flavor-number scheme

Benjamin Guiot

Rencontres QGP France 2021

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Seminal papers: Collins and Ellis, Nucl. Phys. B 360 (1991) 3-30; Catani, Ciafaloni, Hautmann, Nucl. Phys. B 366(1991) 135-188; Gribov, Levin, Ryskin, Phys.Rep. 100 (1983) 1.
$\frac{d \sigma}{d x_{1} d x_{2} d^{2} p_{t}}=\int^{k_{\max }^{2}} d^{2} k_{1 t} d^{2} k_{2 t} F_{i}\left(x_{1}, k_{1 t}^{2} ; \mu^{2}\right) F_{j}\left(x_{2}, k_{2 t}^{2} ; \mu^{2}\right) \hat{\sigma}_{i j}\left(\hat{s}, k_{1 t}^{2}, k_{2 t}^{2}, p_{t}^{2}\right)$
$\hat{\sigma}$ is the off-shell cross section. The unintegrated PDFs, $F\left(x, k_{t}^{2} ; \mu^{2}\right)$, are related to collinear PDFs by

$$
f_{i}\left(x, \mu^{2}\right)=\int^{\mu^{2}} F_{i}\left(x, k_{t}^{2} ; \mu^{2}\right) d^{2} k_{t}
$$

- In these papers, $F_{i}\left(x_{1}, k_{1 t}^{2} ; \mu^{2}\right)=G\left(x_{1}, k_{1 t}^{2} ; \mu^{2}\right)$. It obeys the Balitsky-Fadin-Kuraev-Lipatov equation
- The goal was the resummation of large $\log (1 / x)$.
- Transverse-momentum-dependent (TMD) formalism.

kt-factorization and Heavy-quark production

0 -flavor number scheme
$\sigma(g g \rightarrow Q \bar{Q})$
Unintegrated gluon densities extracted from data
H. Jung and collaborators did some work with this scheme

Correct but not accurate
mixed scheme
$\sigma(g g \rightarrow Q \bar{Q})$
Unintegrated parton densities built from modern (VFNS) collinear PDFs

Incorrect (the main focus of this talk)

Ex: Phys. Rev. D 87 (2013)
094022, 127 citations

Schemes?

Fixed-flavor-number scheme

Proton made of gluon+light quarks
$\sigma=\operatorname{PDF}_{L O}^{F F N S} \otimes \hat{\sigma}_{L O}^{F F N S}$
Main process: $g g \rightarrow Q \bar{Q}$ (flavor creation)
$\sigma=\mathrm{PDF}_{L O}^{V F N S} \otimes \hat{\sigma}_{L O}^{V F N S}$

Variable-flavor-number scheme gluon+light quarks+heavy quarks

Main processes: $g g \rightarrow Q \bar{Q}$ and $g Q \rightarrow g Q$ (flavor excitation)

$$
\hat{\sigma}_{L O}^{V F N S} \simeq 4 \hat{\sigma}_{L O}^{F F N S} \Rightarrow \mathrm{PDF}_{L O}^{V F N S} \simeq \mathrm{PDF}_{L O}^{F F N S} / 4
$$

"Mixed scheme": $\sigma=\mathrm{PDF}_{L O}^{V F N S} \otimes \hat{\sigma}_{L O}^{F F N S}$ too small by a factor ~ 4.

Several groups use (have used) this "mixed scheme".
Include only the $g g$ contribution but they build their uPDFs from VFNS collinear PDFs.

My (old) results obtained with the PB uPDFs and the event generator KaTie. Main contribution: $c g \rightarrow c g$, Phys.Rev.D99 no.7, 074006

Published "mixed scheme" calculations describe data

(approximately)... How?

Some studies include an effective large K factor:
(1) Too large factorization scale $\mu_{F}^{2}>\hat{s}, g\left(x, \mu_{F}\right) \rightarrow 2 g\left(x, \mu_{F}\right)$.
(2) Too large k_{t} tail (for $k_{t}>\mu$). This is the case for KMR uPDFs (with the angular-ordering cut-off).
$f_{i}\left(x, \mu^{2}\right)=\int^{\mu^{2}} F_{i}\left(x, k_{t}^{2} ; \mu^{2}\right) d^{2} k_{t}$
$F_{i}\left(x, k_{t}^{2} ; \mu^{2}\right)$ unconstrained for $k_{t}^{2}>\mu^{2} \sim p_{t}^{2}$.

Cutting $k_{t}^{2}>\mu^{2}$ of the AO KMR uPDFs reduces the result by a factor of 4, B. Guiot, Phys.Rev.D 99 (2019) 7, 074006.

A convincing prediction (?)

Mesage of Phys.Rev.D 99 (2019) 7, 074006 (april): The AO KMR uPDFs are too large and compensate the wrong mixed scheme. Replaced by the PB uPDFs, the groups using this method will underestimate data by a factor of 4 .

Phys. Rev. D 100, 054001 (2019) (september): "The use of the KMR uPDF leads to a good description of the existing charm (D-meson) data already at the leading-order. On the other hand, a new Parton-Branching (PB) uPDF strongly underestimates the same experimental data. A direct inclusion of the higher-orders ..."

Proposed solution:

$$
\mathrm{PDF}^{V F N S} \otimes \hat{\sigma}_{L O}^{F F N S} \rightarrow \mathrm{PDF}^{V F N S} \otimes \hat{\sigma}_{N L O}^{F F N S}
$$

The authors of Phys. Rev. D 100, 054001 (2019) have their results shown in ALICE papers.

Ongoing work

kt-factorization calculations using a VFNS

$$
\sigma=\mathrm{uPDF}_{L O}^{V F N S} \otimes \hat{\sigma}_{L O}^{V F N S}
$$

- Never done before!
- At high energies, VFNS more efficient than the FFNS because the H.Q. PDFs resum large $\ln \left(p_{t} / m_{Q}\right)$.
- Off-shell cross section computed with the event generator KaTie, A. Van Hameren, arXiv:1611.00680.

Ongoing work

$$
f_{i}\left(x, \mu^{2}\right)=\int^{\mu^{2}} F_{i}\left(x, k_{t}^{2} ; \mu^{2}\right) d^{2} k_{t}
$$

- VFNS uPDFs: strong ordering (SO) Watt-Martin-Ryskin (WMR) prescription, Eur. Phys. J. C 31(2003) 73.
- We used the leading-order CT14 PDFs.
- In the SO prescription, $F\left(x, k_{t} ; \mu^{2}\right)=0$ if $k_{t}>\mu$. This is the main difference with the AO prescription.

D meson production

Processes:

Flavor excitation: $c g \rightarrow c g, q c \rightarrow q c$
Flavor creation : $g g \rightarrow c \bar{c}, q \bar{q} \rightarrow c \bar{c}$
Mass: Not a free parameter. For consistency choose the value used by CTEQ, $m_{c}=1.3 \mathrm{GeV}$.
Fragmentation:

$$
\frac{d \sigma}{d y d^{2} p_{t, D}} \approx \int_{0}^{1} \frac{d z}{z^{2}} D_{c \rightarrow D}(z) \frac{d \sigma(a b \rightarrow c+X)}{d y d^{2} p_{t, c}}
$$

with $p_{t, c}=p_{t, D} / z$. We used the Peterson model for $D_{c \rightarrow D}(z)$ with $\varepsilon_{c}=0.05$.
Fragmentation fractions:

$f\left(c \rightarrow D^{0}\right)$	$f\left(c \rightarrow D^{+}\right)$	$f\left(c \rightarrow D^{*+}\right)$	$f\left(c \rightarrow D_{s}^{+}\right)$
0.588	0.234	0.234	0.116

Factorization scale: $\mu=\frac{1}{2}\left(m_{t, 1}+m_{t, 2}\right), m_{t}=\sqrt{p_{t}^{2}+m_{c}^{2}}$.

D meson production at 7 TeV

- Green: "mixed scheme" calculations. We used the same frag. function with the same parameter.
- Better result due to the consistent use of a VFNS.

D meson production at 5 TeV

Contributions to the D meson cross section

- "Mixed scheme" with PB uPDFs underestimates the cross section by a factor of ~ 4.
- Compensating this factor by any mechanism would hardly work because the $g g \rightarrow Q \bar{Q}$ process does not have the correct shape.

B meson production, 7 TeV

Mass: $m_{B}=1.75 \mathrm{GeV}$ (used for CT14 PDFs).
Fragmentation: Peterson model with $\varepsilon_{b}=0.01$.
Fragmentation fractions: 0.403
Surprisingly (?), I didn't find modern kt-factorization calculations for B mesons.

B meson production at 13 TeV

Mass: $m_{B}=1.75 \mathrm{GeV}$.
Fragmentation: Peterson model with $\varepsilon_{b}=0.01$.
Fragmentation fractions: 0.403

LHCb data: JHEP 12 (2017) 026

Conclusion

- At high energy, VFN schemes should be prefered.
- Our VFNS kt-factorization calculations provide a good description of ALICE and LHCb data from 5 to 13 TeV .
- Works better than available results, obtained either in a FFNS or in an (incorrect) "mixed scheme".

Conclusion

- At high energy, VFN schemes should be prefered.
- Our VFNS kt-factorization calculations provide a good description of ALICE and LHCb data from 5 to 13 TeV .
- Works better than available results, obtained either in a FFNS or in an (incorrect) "mixed scheme".

Future work: Consistent implementation of the $2 \rightarrow 1+2 \rightarrow 2$ contributions.

Treatment of $2 \rightarrow 1+2 \rightarrow 2$ processes

- In principle, for full consistency we should include the true lowest order.
- Just follow the lines of the ACOT paper.

- We can expect that the subtraction term cancels completely the $2 \rightarrow 1$ contribution.

Mass uncertainty

Contributions to the B meson cross section

