

Charm jets production and properties with ALICE experiment

Yitao WU

IPHC, Université de Strasbourg University of Science and Technology of China

2021.07.06

Motivation

Heavy flavor hadrons

- Heavy quarks (b,c) are mostly produced in hard scatterings at the initial stage of the collision
- measurement down to $p_T \approx 0$
- Production cross section can be calculated within pQCD

HF-tagged jets

- Measurement of jets from hard scattering down to very low $p_{
 m T,jet}$
 - which helps in constraining the **jet background** (even in large systems)
- Experimental input for gluon-to-hadron Fragmentation Function $(g \to D^0)$ and gluon PDF at low x
- Quark-enhanced jet sample (w.r.t inclusive jets ← gluon-induced showers)
- **pp**: pQCD test
- pA: Cold-Nuclear-Matter effect
- AA: Probe of Quark-Gluon Plasma

ALICE Detector

- ITS $|\eta| < 0.9$
 - Vertexing and tracking
- TPC $|\eta| < 0.9$
 - Tracking and PID
- TOF $|\eta| < 0.9$
 - PID
- EMCAL $|\eta| < 0.7$
 - ePID and trigger
- V0 $-3.7 < \eta < -1.7$ $2.8 < \eta < 5.1$
 - Trigger and background rejection

Analysis Methods

HF-tagged jet reconstruction

- HF hadrons (D, Λ_c , J/ ψ) reconstruction with selected channels
- Replace daughters with hadron candidate
- Jet clustering with all charged tracks
 - Anti- k_T algorithm, R=0.2/0.4

- ➤ Fitting raw spectrum
- Side-band method for background subtraction
- Correction on efficiency and beauty feed-down (prompt and non-prompt)
- \geq 2D unfolding $(z, p_{T,iet})$ for detector effect

$$D^0 o K^- \pi^+ + conj$$
 (B.R. 3.89%) $\Lambda_C^+ o p K_S^0 + conj$. (B.R. 1.59%) $J/\psi o e^+ e^-$ (B.R. 5.97%)

D^0 -tagged jet

Signal + bkg

Background

1.95

0.4

0.3

0.2

ALI-PREL-331367

1.85

ALI-PREL-320197

30

p_{T,ch jet} (GeV/c)

20 25

10

0.5

0.6

0.7

8.0

0.9

D^0 -tagged jet

$$z = p_{T,D^0}/p_{T,jet}$$

Dead cone effect

- Definition
 - Forward emissions from radiators with large mass are suppressed

• In QCD this leads to a change in the expected fragmentation of

heavy and light quarks

• From LEP

$$\theta = \frac{m_q}{E_q}$$

Dead cone effect

- Lund Plane
 - D^0 as well as inclusive jets: Reclustering with C/A
 - Lund plane populated with all splittings of the radiator's prong
- D^0 depletion expected at low angles (~higher ln(1/ θ) values)
- Note: 10 to 15% feed-down contribution in D^0 from b

Dead cone effect

• D-tagged to inclusive ratios vs $ln(1/\theta)$ at pp \sqrt{s} =13 TeV

Significant suppression of radiation in D-tagged jets towards low angles effect decreases toward higher energy of the radiator ($\rightarrow \theta > m_q/E_q$) effect decreases towards lower kT cut (\rightarrow more contamination)

Groomed substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster a jet with Cambridge-Aachen algorithm (angular ordered)
 - Iteratively remove soft branches not fulfilling

Groomed substructure

- Access to the hard parton structure of a jet
 - Mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations
- Soft-drop grooming: Remove large-angle soft radiation
 - Recluster a jet with Cambridge-Aachen algorithm (angular ordered)
 - Iteratively remove soft branches not fulfilling

$$z > z_{\rm cut} \theta^{\beta}$$

$$z_g = \frac{p_{T,sublead}}{p_{T,lead} + p_{T,sublead}}$$

$$\theta_g \equiv R_g/R$$
 - groomed radius

 n_{SD} - number of soft drop splittings

Groomed substructure

- Measurement with D^0 -tagged jets
 - pp \sqrt{s} =13 TeV, z_{cut} =0.1, β =0

ALICE-PUBLIC-2020-002

 n_{SD} : charm jets typically have less hard splitting than light jets

→ Consistent with harder heavy-flavor fragmentation (mass and color charge effects)

Λ_{C}^{+} -tagged jet

$$z = p_{T,\Lambda_C^+}/p_{T,jet}$$

- First measurement of Λ_C^+ in jets at LHC
- Measurement with large uncertainties.
- Exciting prospects for high luminosity LHC run!

Comparison to model

- POWHEG hvq CT10NLO + PYTHIA6
- Softer fragmentation in data
- Seems to favor PYTHIA with softer settings
- Allow to put constrains on models

J/ψ -tagged jet

- For J/ψ analysis, using EMCal triggered events
- Separate prompt and non-prompt components by cuts on pseudoproper decay length

$$\tilde{L}_{xy} = L_{xyz} \times \frac{cm_{J/\psi}}{|p_{e^+e^-}|}$$

D_s analysis

- $D_S \to \phi(1020)\pi \to K^+K^-\pi$
- Topological reconstruction
 - triplet of charged tracks: (+,-,+) or (-,+,-) coming from a reconstructed decay vertex
 - signal + combinatorial background

• Input features: topological and kinematic variables + PID info.

Summary

- D-tagged jets
 - p_T differential cross-section consistent with theory
 - D-meson jet momentum fraction in pp shows softer fragmentation in data for low $p_{T,jet}$
 - test dead-cone effect directly
 - compare groomed jet substructure
- Λ_C -tagged jets
 - First measurement at LHC
 - Allow to put constrains on models
- Outlook
 - Analysis in heavy ion collision (Pb-Pb data)
 - J/ψ -tagged jets at low-pT region
 - D_s in jets at pp 13 TeV