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Background 
The QGP is studied  through different probes. Among  the 
most promising probes are the heavy Quarkonium (bound 
state of a quark and its respective antimatter quark). Due to 
their heavy mass  (m

c
 = 1.5 GeV and m

b
=4.18 GeV) they 

are only created at the early stage of QGP in hard 
processes,they interact while traveling through the medium 
and leave without reaching thermal equilibrium.

Need for theoretical and 
phenomenological  models  to 

understand the experimental data



Background 
Quarkonium as Hard Probe 

Thermometer  Transport properties  Medium density  



Model History 

         

The model  was also applied to Quarkonium production 
in pp  and  heavy ion collisions(only primordial).  For the 
case of pp collisions the model was able to reproduce 
the experimental data.

  Taesoo .S, J.Aichelin and 
E.Bratkovskaya , Physical Review C 
96. 014907 (2017)

The idea of the formalism goes back to Remler’s work   in which  a general 
formula connecting composite particle cross section with time-dependent 
density operators was presented. The formalism is able to deal with many 
particles (nucleons            deuterium )  

E.A. Remler, ANNALS OF 
 PHYSICS 136, 293-316 
(1981)



Motivation 

         

Apply the formalism to 
Quarkonium  production 
in heavy ion  collisions    

● Interaction of heavy quarks with 
the  bulk particles

● Expansion of the medium
● Formation of quarkonium states 

from HQ from difference vertex

However in the same contribution was pointed out 
that for heavy ion collision a considerable 
enhancement of primordial (in the initial state) J/Psi 
was found when QGP effects are ignored.

  Taesoo .S, J.Aichelin and 
E.Bratkovskaya , Physical Review C 
96. 014907 (2017)



How does it work ? 

         

HQ production  

Quarkonium interaction 
with QGP

The probability of a Quarkonium 
state    formation in the medium is 
given by

PΨ
(t)=Tr [ρQQ̄

Ψ
ρN (t)]

ρQQ̄
Ψ
=∑

i

|ΨQQ̄
i ⟩ ⟨ΨQ Q̄

i |

Two-body 
density matrix

∂ρN (t)
∂ t

=−i [HN ,ρN (t) ]

Time evolution of the N-
body system density 
matrix 

Ψ



         

                                                         

How does it work ?

Γeff
Ψ
( t)=

∂ PΨ
(t)

∂ t
=Tr [ρQ Q̄

Ψ ∂ρN( t)
∂ t

]

The effective  rate for  Quarkonium  state 
creation(dissociation)  in the medium will be

in previous applications of Remler's model there was no influence of 
a medium (nuclear reactions and pp collision) 

Since       is the density operator obtained 
from the ground state wave function, it is 
constant in time (vacuum basis).

Γeff
Ψ
( t)=

∂ PΨ
(t)

∂ t
=Tr [

∂(ρQQ̄
Ψ

ρN(t ))
∂ t

]

If we also consider the influence of the 
medium, now the density operator of the 
ground state is a time dependent object 
(local basis)

Γeff
Ψ
( t)=

∂ PΨ
(t)

∂ t
=Tr [ρQ Q̄

Ψ
(t )

∂ρN(t )
∂ t

]+Tr [ρN( t)
∂ ρQ Q̄

Ψ
(t )

∂ t
]

ρQQ̄
Ψ

Original Remler’s 
formalism(only one rate 
term)

“Updated” Remler’s 
formalism (two rates 
contributions+QQbar SM 
interaction+relativistic 
Wigner)



         

 

How does it work ?

σ

To work  in the phase space we 
use the Wigner function 

W N( t)=∏
i
ℏ

3
δ( xi−xi0(t ))δ( p i−pi0(t ))

   Double Gaussian approximation 
(Harmonic oscillator)                             
                              

WQQ̄
Ψ
(r rel , prel)=C e

−rrel
2

σ
2

e
− prel

2
σ

2

ℏ
2

 The Gaussian width  

[
ℏ2

2μ
∇

2
+V (r )]ΨQ Q̄(r)=EQ Q̄ΨQQ̄

⟨ r2 ⟩=
⟨ΨQQ̄|r

2|ΨQQ̄ ⟩
⟨ΨQ Q̄|ΨQ Q̄ ⟩

∫ e
−

r 2

σ
2

r 2d 3r

∫ e
−

r 2

σ
2

d 3r

  For the Wigner function of the full 
system   Semi-classical approach  
                                                            

W Ψi

=∫d 3 y e ipy ⟨r− y
2|Ψ

i⟩⟨Ψ i|r+ y
2 ⟩

 

           
● The double Gaussian expression is  a non 

relativistic Wigner function that can be  
applied in the center of mass, where the HQ 
have a low relative velocity(due to the large 
mass).
  

● A fully relativistic version can be derive for a 
finite and well-defined center of mass velocity

W yΨ ,uT

Ψ (Y ,uT , rrel , prel )=δ(Y− yΨ)δ (uT−uT ,Ψ)W QQ̄ , NR
Ψ (rrel

cm , prel
cm)

[rrel
cm , prel

cm ]→ f (rrel
lab , prel

lab)



         

How does it work ?
Collision rate

● The Quarkonium production in our 
model  has a contribution from three 
process (see image)

● Collision rate  do not discriminate 
between dissociation (destroys 
probability) like processes and 
recombination (creates) like 
processes 

Substituting the expression for the Wigner functions of  
the density operator of Quarkonium state    and the N-
body system 

Γcoll ,Q Q̄(t )=∑
i=1,2

∑
j≥3

δ (t−t ij (ϵ))∫
d 3 pid

3 x i
h3 [W QQ̄

Ψ
( p1, x1; p2 , x2)W N ( t+ϵ)−W QQ̄

Ψ
(p1 , x1 ; p2 , x2)W N ( t−ϵ)]

Interaction of HQ with 
the QGP were carried 
out by EPOSHQ 

Ψ

Γeff
Ψ
( t)=

∂ PΨ
(t)

∂ t
=Tr [ρQ Q̄

Ψ ∂ρN( t)
∂ t

]



         

How does it work ?
Primordial and total 
probability

● Due to the dissociation temperature (melt down 
any bound state) and the anisotropy of the 
temperature in QGP, the initial probability 
dependent on time.

● Each time that our code find a HQ quark below 
the its dissociation temperature (active quark) for 
the first time, its contributions will be accumulated 
into the initial probability.

● After that,  further contributions will be set in the 
rates terms.  

By integrating the equation of the effective rate we obtain a 
time dependent expression for the probability       

PQQ̄
Ψ

(t)=PQQ̄
Ψ
(t init

Q
)+∫

t init
Ψ

t

Γeff (t
'
)dt '

Primordial(initial) 
probability 

The probability equation only refers to a 
single HQ pair , but this analysis can be 
extended to all possible combinations 
(pairs) active at a given time.

PΨ ,tot
(t )= ∑

j=1

NQ
active

×N Q̄
active

PQ Q̄
Ψ
(t )

PQQ̄
Ψ

(t init
Q
)=∑

i=1

N init
Q

WQ Q̄
Ψ
(r rel , prel ,t init

Q
)



Vacuum basis results (Original 
Remler’s Formalism) 



Preliminary Results J/Psi Effect of primordial production (uncorrelate ccbar 
pairs )    

RAA ( pT , y )=

dN AA

d 2 pT dy

⟨N coll ⟩
dN pp

d 2 pT dy

Recombination effects 

σ vaccum=0.35 fm



         

Preliminary Results J/Psi 

Mid-rapidity and 

Need for temperature dependent Wigner function

√s=2.76TeV

Temperature effects (uncorrelated c-
cbar and vacuum basis)

PhD Thesis : Raúl Tonaituh Jiménez 
ALICE Collaboration

PhD Thesis : Nirupam Dutta



         

Preliminary Results J/Psi

  v
2
 that extend at rather large p

T
 

Elliptic flow (uncorrelated ccbar pairs)



“Updating” the Remler’s formalism: 
local basis and QQbar semi-classical 
interaction 



         

Local rate

● The local rate comes from the 
time variation of the ground state 
density 

● We assume that the temperature 
modification  affect the mean 
square radius but not the form of 
the two body Wigner function

Considering now that           depend on time through the 
temperature. Assuming that the temperature dependence of our 
two body Wigner function is located in the Gaussian width       
through its relation with the mean square radius 

ρQQ̄
Ψ
( t)

σ
2
(T )=

2
3

⟨r 2
(T )⟩

Γ loc(t )=Tr [ρN (t )
∂ρQQ̄

Ψ
(t)

∂ t
]

Applying the trace 
operator 

Γ loc(t )=∫∫ d3rd3 r '
∂ρQ Q̄

Ψ
(t )

∂ t
(r ,r ' , T (t ))ρN=2

QQ̄
(r , r ' , t)

Moving to the phase space by 
substituting the Wigner function

Γ loc(t )=16
∂σ(T ( t))

∂ t
(
rrel

2

σ
3 −

σ prel
2

ℏ
2 )e

−rrel
2

σ
2

e
− prel

2
σ

2

ℏ
2

Roland Katz Ph.D thesis

σ (T )



         

Semi-classical QQbar 
relativistic  interaction ● In the original Remler’s model,the interaction 

between the pair members was not take it into 
account.

● But due to the influence of the medium expansion 
an interaction potential is need to keep HQ pairs 
close to each other. 

● This relativistic interaction is based on an 
instantaneous potential, meaning that the relative 
momentum of the HQ pair should be small. 

The simplest relativistic semi classical 
modification to movement of a QQbar pairs 
is to define a Lagrangian which contains the 
relativistic energy and the gluon fields  in a 
Coulomb approximation

L=−γmc2
+
C
r

d
dt

∂ L
∂ q̇i

−
∂ L
∂ q i

=0

γmr θ̇=
l2

γmr 3 l2
d2

d θ2

1
r
−γ

C
m
+
l2

r
=0



Preliminary Results J/Psi (local 
vs Orignal Remler’s model)

Comparison between the  original 
Remler’s model and local basis 
prediction for the full probability 
and nuclear modification factor

Important contribution coming from the binding potential (keeping close the HQ pairs for a 
bit more longer) and the Wigner functions which dependent on the temperature (local 
basis) are observed in the results. The combined effects of the interaction potential and 
mean square radius are able to repopulate the quarkonium states contrarily  to the 
vacuum basis.

The     spectra for the      
production,      and     is a 
work in progress !!!  

pT J /Ψ
RAA v 2



Conclusions

         

We have presented a model based on the  density operator that allows us to obtain the 
time  evolution of the formation probability of Quarkonium through   an  effective rate  in the 
QGP.

According with the results, the implementation of a temperature (time) dependent Wigner 
function and relativistic HQ pair interaction modifies the massive suppression that we 
obtained while using the vacuum basis.

Although the relativistic HQ pair interaction has been implemented , this formalism is base 
in a instantaneous potential, which is able to deal with a relativistic pairs as long as their 
relative momentum is not large (non relativistic behavior in the center of mass)  



        Thanks!!!



Preliminary Results J/Psi Effects of collision criteria  (uncorrelated 
ccbar and  vacuum basis)

● The effect of collision increase with 
time  together with the 
thermalization degree 

● As the fireball expand in time most 
of the  collision leads to a 
dissociation process 

J /Ψ+g⇔c+c̄+X





Back up

         

J /Ψ+g⇔ c+ c̄+X
The detail balance law 

Rates Equation

dN Ψ

d τ
=ΓrecombN cN c̄ [V FB ( τ)]

−1
−ΓdissNΨ

dN Ψ

d τ
=−NΨ L τ+G (Ψ)=

−1
τΨ

[NΨ ( τ)−NΨ

eq
( τ)]



Analysis implementation

         



Analysis implementation
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