Flavour and Energy Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions from RHIC-BES to LHC Energies

Rencontres QGP France – Étretat 2021

Fernando Antonio Flor

René Bellwied Gabrielle Olinger

University of Houston

July 5th, 2021

Overview

PART I

- Sequential Hadronization Evidence
- Collision Energy Dependence of Chemical Freeze-out Parameters in A-A collisions via The FIST
 - Single Freeze-out Temperature (1CFO)
 - Multiple Freeze-out Temperatures (2CFO)

PART II

- $\hfill\square$ Ad Hoc Modifications to Hadronic Spectrum
 - Inclusion of Deuteron
 - Expansion to Charm

Excerpt from King Thrór's Map

Figure: Tolkien, J.R.R., The Hobbit. George Allen and Unwin. (1937).

PART I: ENERGY DEPENDENCE

Sequential Hadronization Evidence: Susceptibilities

- Continuum extrapolated Lattice QCD χ_4/χ_2 results for light and strange quarks:
 - Depict different behaviors between light and strange quarks
 - flavour-specific "kinks" at particular temperatures
 - Deviations of lattice curves coinciding with said kinks
 - Support flavour separation of characteristic temperatures
 - ~15 MeV higher for strange quarks
- Similar findings exist from Hadron Resonance Gas (HRG) Model Calculations
 - $\hfill\square$ Event-by-event net particle multiplicity fluctuations via flavour specific χ_1/χ_2 ratios
 - Thermal Fits based on Experimental Yields

Figure: R. Bellwied and WB Collab. Phys. Rev. Lett. 111 (2013)

Sequential Hadronization Evidence: STAR

- Phenomenological Evidence at STAR (AuAu 39 GeV):
 - Common T_{ch} when all particle species are fit
 - T_{ch} "drops" by 15 20 MeV if only light-flavor particles are fit (π K p)
- Hadron Resonance Gas (HRG) Model Calculations via flavor specific χ_1/χ_2 ratios
 - Support energy dependent separation of freeze-out temperatures

Figures: STAR Collaboration. Phys. Rev. C. 96 (2017) and R. Bellwied et al. Phys. Rev. C 99. (2019)

Sequential Hadronization Evidence: ALICE

Pseudo-critical temperature from Lattice QCD: 158 \pm 14 MeV †

Seems to coincide with single chemical freeze-out temperature at ALICE, $T_{ch} = 156 \pm 2$ MeV

- Apparent tension between strange and light baryons
 3σ effect in protons
 - -2σ effect in Ξ

 $\Box = 20$ effect in \pm

Question at hand: Does hadronization occur at the same temperature for all quark flavours?

Preliminary data for PbPb @ 5.02 TeV shows even greater tension.

Figure: F. Bellini (ALICE Collaboration). Nucl. Phys. A. 971 (2018)., [†] Borsanyi, et al. (2020). Phys. Rev. Lett. 125 (2020).

Thermal FIST (The FIST)

- User-friendly package within the family of HRG models
 - (Hadron Resonance Gas Model ~ Statistical Hadronization Model)
 - □ V. Vovchenko, H. Stoecker. (Comput. Phys. Commun. 244 (2019))
 - $\hfill\square$ HRG Model Options
 - <u>Ideal</u>, Diagonal Excluded Volume, van der Waals
 - Parameterization of S-matrix approach
 - Finite resonance widths
 - Statistical Ensemble Options
 - Grand Canonical, Canonical, Strangeness Canonical
- Primary Modes
 - In Thermal Fit Mode Extracting Freeze-out Parameters from Experimental Yields
 - $\hfill \Box$ Thermal Model Mode Calculating Yields from fixed Freeze-out Parameters
 - Event Generator Mode
- User Input
 - Hadronic Spectrum
 - Experimental Yields

Thermal FIST (The FIST)

- User-friendly package within the family of HRG models
 - (Hadron Resonance Gas Model ~ Statistical Hadronization Model)
 - □ V. Vovchenko, H. Stoecker. (Comput. Phys. Commun. 244 (2019))
 - HRG Model Options
 - <u>Ideal</u>, Diagonal Excluded Volume, van der Waals
 - Parameterization of S-matrix approach
 - Finite resonance widths
 - Statistical Ensemble Options
 - Grand Canonical, Canonical, Strangeness Canonical
- Primary Modes
 - Thermal Fit Mode Extracting Freeze-out Parameters from Experimental Yields
 - Derived Thermal Model Mode Calculating Yields from fixed Freeze-out Parameters
 - Event Generator Mode
- User Input
 - Hadronic Spectrum
 - Experimental Yields

Hadronic Spectrum (Particle Data Group Lists)

Figure: P. Alba et al. Phys. Rev. D. 96 (2017)

- Ideal HRG Model assumes a noninteracting gas of hadrons and resonances
 - The more complete the hadronic spectrum, the closer the model is to reality
- There exists different levels of confidence on the existence of individual resonances
 - From Particle Data Group (PDG)
 - **** Denotes Well-Established States
 - $\hfill\square$ * Denotes States with least experimental confirmation
 - Incomplete decay channel information/branching ratios

From Houston Theory Group:

• PDG2016+: 738 States (*, **, *** and ****)

- Provides best compromise between number of states
- Used for entirety of this work
- See Alba et al. (Phys. Rev. C. 101 (2020)) for a detailed description of the effect of additional resonances on freeze-out parameters.

Experimental Yields Used in this Study

ALICE

- PbPb @ 5.02 TeV (Nuclear Physics A. 982 (2019))
- PbPb @ 2.76 TeV (Phys. Rev. C. 88 (2013))

STAR

- □ AuAu @ 200 GeV (Phys. Rev. C. 79 (2009))
- □ AuAu @ 64.2 GeV (Phys. Rev. C. 83 (2011))
- □ AuAu @ 39.0 GeV (Phys. Rev. C. 96 (2017) and Phys. Rev. C. 102 (2020))
- a AuAu @ 27.0 GeV (Phys. Rev. C. 96 (2017) and Phys. Rev. C. 102 (2020))
- AuAu @ 19.6 GeV (Phys. Rev. C. 96 (2017) and Phys. Rev. C. 102 (2020))
- AuAu @ 11.5 GeV (Phys. Rev. C. 96 (2017) and Phys. Rev. C. 102 (2020))
- For all STAR Energies, (anti)proton yields are "all inclusive"
 - $\hfill\square$ Not corrected for weak-decay feed-down contributions from As
 - For this work, (anti)proton yields corrected via Andronic et al. (Nucl. Phys. A. 772 (2006))

Collision Energy Dependence of Chemical Freeze-out Parameters in A-A collisions

- Input available ALICE and STAR data into The FIST; extract freeze-out parameters
 - Grand Canonical Ensemble
 - Most Central Bin (0 10 %)
 - Fit Parameters:
 - Model: Ideal
 - Fitting T, V and $\mu_{\rm B}$
 - Particles in Fit:
 - $\pi^+, \pi^-, K^+, K^-, p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^-, \bar{\Xi}^+, \Omega^- \text{ and } \bar{\Omega}^+ (K^0_S \text{ and } \phi \text{ where available})^\dagger$
 - Perform multiple fits w/ different combinations of the above
 - Examine sensitivity of fit parameters when fitting different particle species
 - Compare with HRG Model Susceptibility Calculations
 - Compare with Lattice Calculations
 - Particle/Decay List
 - PDG2016+

[†]Shorthand notation is henceforth used (e.g. Ω refers to both Ω^- and $\overline{\Omega}^+$, etc.)

The Culprits

The FIST: PDG2016+ Fits PbPb @ 5.02 TeV (0 - 10%)

FAF et al. Phys. Lett. B. 814 (2021)

Energy Dependence: "Full" Fit

$$T|_{\mu_B=0} = 157 \pm 3.8 \text{ MeV}$$

Next, we parameterize $T|_{\mu_B=0}$ value for flavour specific fits and check for energy dependent temperature splitting

FAF et al. Phys. Lett. B. 814 (2021)

Energy Dependence (0 - 10%): Flavour Specific Fits

• Supports a flavour-dependent freeze-out temperature

 $T \mid_{\mu_B=0}$ values: $T_L = 150.2 \pm 2.6 \text{ MeV}$ $T_S = 165.1 \pm 2.7 \text{ MeV}$ $T_{LQCD} = 157 \pm 14 \text{ MeV}$

By eye, T_L and T_S lines converge at high μ_B

If we use temperatures extracted from yields that serve as susceptibility (i.e. order parameter) proxies, then our measurements may signal a critical point at high μ_B .

FAF et al. Phys. Lett. B. 814 (2021) and WB Collaboration Phys. Rev. Lett. 125 (2020)

Isentropic Trajectories Cross-Check

- Check if 2CFO parameters lie on isentropes in T- $\mu_{\rm B}$ plane

- Calculated via a Lattice QCD EoS †
- Validity to finite densities has been shown up to $\mu_{\rm B}/{\rm T}{=}~2$
 - Exclusions:
 - STAR AuAu @ 11.5 GeV
 - ALICE PbPb (S/N_B diverges)
- ∀ Energies, our light and strange freeze-out parameters lie well within the projected trajectories
 - Uncertainties based on folding errors of the light hadron freeze-out parameters.
 - Special Thanks to **J.M. Stafford** for these calculations

FAF et al. Phys. Lett. B. 814 (2021) and [†] Guenther, J.N. et al. Nucl. Phys. A. 967 (2017)

PART II: THERMAL MODEL EXPANSION

Fernando A. Flor (faflor@uh.edu)

Experimental Yields Used in this Study

ALICE

- PbPb @ 5.02 TeV (Nuclear Physics A. 982 (2019))
 PbPb @ 2.76 TeV (Phys. Rev. C. 88 (2013))
 - (anti-)Deuteron Yields: Phys. Rev. C. 93 (2016))
- □ pPb @ 5.02 TeV (Phys. Lett. B. 728 (2014))
- □ pp @ 7.00 TeV (Nature Phys. **13** (2017))

We begin with an ad hoc cross-check to prove to ourselves the inclusion of K in the *light* fit is OK within some reasonable bound

Addition of Deuteron to Hadronic Spectrum

|S| = 0

Inclusion of (anti-)deuteron to particle list provides extra degree of freedom fo thermal fits

- Allows for a "true" light particle fit to yields
- Removes need for K presence in all fits
 - K Yields have been shown to be insensitive to FO Temperature (D. Magestro Phys. G. 28 (2002).)

Other considerations:

- Increasing Baryon Number
- Mass similar to charmed mesons

 $D m_{D^0} = 1865 \text{ MeV}$

 $D m_{D^{\pm}} = 1870 \text{ MeV}$

The FIST: PDG2016+ Fits PbPb @ 2.76 TeV (0 - 10%)

Fit	$\mu_{ m B}$ (MeV)	$T_{ m ch}$ (MeV)	$V(fm^3)$	χ^2/dof
πpd $\pi Kp \Lambda \Xi \Omega K_{0}^{0} \phi d$	0.0 0.0	144.6 ± 2.39 150.1 ± 1.65	7911.6 ± 1177 5613.6 ± 588.5	1.36 1.71
$K\Lambda = \Omega K_S^0 \phi$	0.0	153.9 ± 2.30	4389.7 ± 640.8	1.31
$\pi K p$	0.0	143.2 ± 2.79	8031.7 ± 1263	1.41
π <i>K</i> ρΛΞΩ $K^0_{S}\phi$	0.0	149.6 ± 1.76	5764.4 ± 635.8	1.95
$K\Lambda \Xi \Omega K_S^0 \phi$	0.0	153.9 ± 2.30	$4389.7~\pm~640.8$	1.31

- Inclusion of πpd fit instead of πKp improves quality of light fit
 - $\hfill\square$ Good compromise between fit quality and flavour content
 - $\hfill\square$ Ad Hoc Cross-check: Success

Addition of Charmed Hadrons to Hadronic Spectrum

Addition of Charmed Hadrons to Hadronic Spectrum

Addition of Charmed Hadrons to Hadronic Spectrum

- Inclusion of 80 additional states to the PDG2016+ List from PDG2020
 - Including (Hyper) Nuclei
 - Mass Cut-off: 5.62 GeV ($\Lambda_{\rm b}^0$)
 - Specifically with feed-down contributions to
 - D^0 , D^{\pm} , $D_{\rm s}^{\pm}$, D^{0*} , $D^{\pm*}$, and ${\rm J}/\psi$ (incomplete)

Charmed Statistical Hadronization Model

- Charmonia are "implanted" into QGP (Matsui and Satz ca. 1986)
 - $\hfill\square$ Modification is observed in terms of sequential melting
- Charmonia are screened by QGP (Stachel and PBM ca. 2000)
 - Production occurs at phase boundary
 - Signal for deconfined charm quarks
 - Production scales as a function of collision energy
 - Thermalized charm quark production probability scales with $N_{c\bar{c}}^2$ with fugacity g_c

Preliminary D^0 Yield Calculation

- Grand Canonical Ensemble
 - \Box $T_{\rm ch}$ = 156.5 MeV
 - $\ \square \ \mu_{
 m B}$ = 0 MeV
- Experimental D^0 Yield is used in fit
 - Charmed hadrons are calculated by Model

Fugacity g_c determined by charm balance function:

$$N_{c\bar{c}} = \frac{1}{2}g_c V\left(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th} + \ldots\right) + g_c^2 V\left(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th} + \ldots\right) + \ldots$$

Where $N_{c\bar{c}}$ obtained from measured charm cross-section from pp @ 7 TeV, shown to be 0.954 ± 0.69 mb (Eur. Phys. J. C77 (2017) 550)

The FIST: PDG2016+C Fits PbPb @ 5.02 TeV (0 - 10%)

Based off BGBW Fit to $D^0 p_T$ Spectrum: ALICE Collaboration. JHEP. 174 (2018)

Fernando A. Flor (faflor@uh.edu)

Rencontres – Étretat (05.07.21) 20 / 22

$\mathsf{Summary}/\mathsf{Discussion}$

PART I:

At a vanishing baryochemical potential, we calculate light and strange flavour freeze-out temperatures, respectively:

- $T_{\rm L}$ = 150.2 ± 2.6 MeV
- $T_{\rm S} = 165.1 \pm 2.7 \,\, {\rm MeV}$
- Flavour separation confirmed from LHC down to lower RHIC energies
 - $\hfill\square$ Confirms flavor hierarchy extends into BES
 - Flavour dependent fits consistently depict an overall better quality of fit
 - Potential convergence of T_L and T_S lines at high μ_B might signal interesting physics

Summary/Discussion (cont.)

PART II: (IN PROGRESS)

- Mass similarity between (anti-)deuteron to charmed meson to be exploited
 - \square m_d = 1876 MeV

E FULBRIGHT

- $\square m_{D^0} = 1865 \text{ MeV}$
- $\Box m_{D^{\pm}} = 1870 \text{ MeV}$
 - Vast differences in particle production of charmed vs non-charmed hadrons
- Charm extension to SHM underway [†]
 - $\hfill\square$ Considering scaling factor $\gamma_{\mathcal{C}}$ to take initial charm production into account
 - \Box D^0 Yield seems to be properly replicated by preliminary Thermal Model calculations
- Inclusion of H^3_{Λ} into strange fit
- Expansion of 2CFO Campaign
 - $\hfill\square$ System Size Multiplicity Dependence at ALICE

[†] In Collaboration with B. Hippolyte and O. Poncet (U. Strasbourg)

CAVALRY

Fernando A. Flor (faflor@uh.edu)

Rencontres – Étretat (05.07.21) 22 / 22

The FIST: PDG2016+ Fits PbPb @ 2.76 TeV (0 - 10%)

(anti-)H_A^A and (anti-)He⁴ Yields: ALICE Collaboration. Phys. Lett. B. 754 (2016) and Nucl. Phys. A. 93 (2018)

The FIST: PDG2016+ Fits PbPb @ 2.76 TeV (0 - 10%)

Fit	$\mu_{ m B}$ (MeV)	$T_{ m ch}$ (MeV)	<i>V</i> (<i>fm</i> ³)	χ^2/dof
$\pi p d He^4$ $\pi K n \Lambda = \Omega K^0 \phi d H^3 He^4$	0.0	145.6 ± 2.55	7450.4 ± 1179.3	11.0/6 33.4/18
$K\Lambda \equiv \Omega K_S^0 \phi H_\Lambda^3$	0.0	152.1 ± 1.71 156.0 ± 2.19	3887.5 ± 543.5	13.3/10
$\pi p d$	0.0	144.6 ± 2.39	7911.6 ± 1177	5.45/4
$\pi K p \Lambda \Xi \Omega K_S^0 \phi d$	0.0	150.1 ± 1.65	5613.6 ± 588.5	23.9/14
κπΞωκξφ	0.0	133.9 ± 2.30	4309.7 ± 040.0	10.5/0
$\pi {\it Kp}$	0.0	143.2 ± 2.79	8031.7 ± 1263	5.65/4
π <i>K</i> pΛΞΩ $K^0_S\phi$	0.0	149.6 ± 1.76	$5764.4\ \pm\ 635.8$	23.4/12

• Inclusion of $\pi pdHe^4$ fit instead of πpd does not seem improve quality of any fit

ALICE PbPb @ 5.02 TeV (0 - 10%) D⁰ BGBW Fit

D⁰ p_T Spectrum: ALICE Collaboration. JHEP. 174 (2018)

Fernando A. Flor (faflor@uh.edu)

Rencontres – Étretat (05.07.21) 22 / 22