FOCAL in ALICE

Rachid Guernane (LPSC Grenoble)

Rencontres QGP France

July 5-8 2021, Etretat

FoCal-E

FOCAL proposal

 $3.4 < \eta < 5.8$ (baseline design @ 7 m)

ALICE upgrade for LHC Run 4

- FoCal-E: high-granularity Si–W sampling calorimeter for photons and π^0
- FoCal-H: conventional Pb-Sc sampling calorimeter for photon isolation and jets

Observables:

- \checkmark π^0 (and other neutral mesons)
- ✓ Isolated (direct) photons
- √ Jets (and di-jets)
- \checkmark J/ψ (Y) in UPC
- ✓ W, Z
- ✓ Event plane and centrality

See Letter of Intent: ALICE-PUBLIC-2019-005

FoCal-H

Probing the gluon density with isolated photons

- Prompt photon production (LO) is sensitive to the gluon density inside the colliding hadrons
 - nPDF: very few (DIS)
 measurements available
 Probe the gluon density via the

(DGLAP) evolution

- Large uncertainties on the gluon content of the nucleus at small *x*
- Explore non-linear evolution and saturation at small x

- Significantly suppresses fragmentation and bremsstrahlung
- Reduce the background of decay photons in the measured signal

Kinematic reach

 Coverage of the electromagnetic and hadronic probes by the current and planned measurements at LHC and other colliders

FOCAL-E conceptual design

Studied in simulations 20 layers: W(3.5 mm $\approx 1X_0$) + silicon sensors

Two types: Pads (LG) and Pixels (HG)

- Pad layers provide shower profile and total energy
- Pixel layers (ALPIDE) provide position resolution to resolve overlapping showers

Main challenge: separate γ/π^0 at high energy

- Two photon separation from π^0 decay (p_T = 10 GeV, η = 4.5) ~5 mm
 - Requires small Molière radius and high granularity readout
- Si-W calorimeter with effective granularity ≈ 1 mm²

Further optimization left for TDR: location of pixel layers, number of pad layers, sensitive area at front for CPV/eID

Key ingredients for isolated photon measurement w/ FOCAL

Impact of forward photons on nPDF

Sys. uncer. added in quadrature

- Sys. uncer. < 15 % above 4 GeV
- Below 6 GeV, uncertainty rises due to background subtraction
- Significant improvement (up to factor 2) on EPPS16 gluon PDF
- Similar improvement as for open charm
 Test factorization/universality

Impact of FOCAL refit on nNNPDF

Recent nuclear PDFs: nNNPDF from DIS and theoretical assumptions

- No constraints for x<10⁻² from DIS
- FOCAL provides significant constraints over a broad range: ~10⁻⁵-10⁻²
- Outperforming the EIC for x<10⁻³

Comparison with LHCb

Public note from LHCb with more info LHCb-FIGURE-2020-006

Expected uncertainties on R_g from LHCb

- Main goal of the small-x program is to identify or exclude deviations from linear evolution for lower x (and Q)
 - Benefit from multiple measurements (w/ diff. syst.) over a broad range in x and Q

FOCAL timeline

Table 6: Project timeline

Year	Activity
2016-2021	R&D
2020	Letter of Intent
2020-2022	final design
	Technical Design Report
	design/technical qualifications
2023-2027	Construction and Installation
2023–2025	production, construction and test of detector modules
2024–2025	pre-assembly
	calibration with test beam
2026	installation and commissioning
06/2027	Start of Run 4

- Next important step: entering the engineering phase towards testbeam(s) 2021/22 and TDR
 - Produce a close-to-final prototype module
 Pad and pixel layers
 HCAL prototype
- Production estimated to fit well into 24 months
 - Plus 6 months of contingency

(not adjusted for Covid-19 changes)

And much more...

- Performance in PbPb affected by shower overlaps and combinatorial background
- Efficiency for high energy neutral pions nevertheless quite good
- Combinatorial background may prohibit very low p_T reconstruction, but above 5 GeV expect a precise R_{AA} measurement

Other observables

 π^0 - π^0 correlations in pp (for decorrelation studies)

- Promising performance for other key observables
- To be studied in more detail for TDR

Jet resolution (jet/dijets in pp/pPb/UPC)

J/ψ reconstruction (in UPC)

Recent discussion focused on isolated direct photon measurement as the core of the program

 Broader program to be studied for TDR: correlation measurements, UPC. PbPb

+ synergies with RHIC-II and EIC