LHCb Upgrade 2 for heavy-ion physics

Michael Winn

DPhN IRFU-CEA

Etretat QGP France, July 7, 2021

Quark-Gluon-Plasma physics

- ► characterize the macroscopic long-wavelength properties of the QGP
 → determine thermodynamic quantities & transport coefficients
- ▶ access the microscopic parton dynamics
 - \rightarrow Degrees of freedom and their coupling at which energy scale and temperature?
- Develop a unified picture of QCD particle production from small to larger systems
 - \rightarrow How is hadronisation modified? Limits of hydrodynamics and how do we approach it?
- ► Constrain the initial conditions: input for heavy-ions and hadron structure

Heavy-ion physics future after 2030

- after ALICE upgrade, sPhenix (Run 3), ATLAS/CMS upgrades (Run 4), during FAIR/EIC running
- key: precise & broad & flexible

Scientific questions in 2030

- ► Characterizing the macroscopic long-wavelength properties of the QGP → precise temperature and time evolution of the system Thermal and preequilibrium radiation
- ▶ Accessing the microscopic parton dynamics underlyling QGP properties → precise experimental assessment of heavy-flavour transport, of in-medium QCD force and hadronization mechanism
 - ightarrow Heavy-flavour & quarkonium in nucleus-nucleus collisions
- ▶ Developing a unified picture of QCD particle production and initial state from small (pp, γ p, γ Pb) to larger (pA and AA)
 - ightarrow high-luminosity pp, pA and fixed-target programmes

LHCb Upgrade II

LHCb Upgrade II including fixed-target programme

- longitudinal boost, fully instrumented in $2 < \eta < 5$
 - Access to low p_T at moderate momenta
 - secondary vertexing
- Precision
 - High rate capability including *pp* with vertex association
 - Excellent vertex and track resolution
 - good particle identification
- Flexibility
 - Full software trigger

Nucleus-Nucleus collisions with LHCb

- nucleus-nucleus collisions require Upgrade 2: Pile-up O(40) in pp \rightarrow conditions become more similar to nucleus-nucleus collisions
- a unique chance for heavy-ion physics: feasibility studies: 'worst' case: 0-10% PbPb
- \blacktriangleright focus on heavy-flavour and prompt dileptons as highlights \rightarrow interesting light-flavour production & correlation programme due to forward acceptance and PID

Charm and beauty from midrapidity to forward rapidity

- hadronisation: limitation to use charm for material properties
- change heavy quark doping of the QGP crucial to (de)validate picture of heavy-quark hadronisation
 - → arXiv:2104.12754: quark density enters as power
- ► charm production in LHCb acceptance:
 ≈ midrapidity plateau to forward rapidity
- measure single charm/beauty charm-charm correlations, quarkonium and multi-charm baryons in this rapidity range

Multi-heavy flavour baryons

- first fast simulation study with observed channels by LHCb
- ▶ background reduced via BDT by 8 orders of magnitude via 2ndary and tertiary vertex in PbPb most central, rejection simulation statistics limited → so far too low S/B for detection
- feasibility to be studied in smaller collision systems and with new anticipated decay channels

χ_C to 4 muons

- feasibility study of χ_c : with J/ψ + photon/dielectron/dimuon
- \blacktriangleright 4-muon channel best: at the edge in 0 10% PbPb with about 1% S/B in worst case model
 - ightarrow promising for smaller collision system with large luminosity

Pre-equilibrium dileptons

Coquet, Du, Schlichting, Ollitrault, Winn arXiv:2104.07622

- how fast do we thermalise?
- ▶ When do charges emerge from the initial state?
 - \rightarrow questions for dileptons at relatively high masses at the LHC
- window of opportunity at the LHC since DY dominant only at relatively high mass

Nucleus-nucleus: preequilirium dileptons

arxiv:1710.02867

- ▶ fast simulation studies indicate very good potential in a forward geometry $S/B \approx 1$: longitudinal boost for muon-ID, large longitudinal vertex displacements for charm/beauty semileptonic decays
 - \rightarrow follow-up studies planned with charm tagging
- measure directly where factorisations breaks in nucleus-nucleus collisions!

High-luminosity pp and pA programme

- constrain the initial state at low and high-x extremes in parallel to electron-ion collider running
- probe hadronisation in high-multiplicity
- precision QCD at intermediate scales with UPC and inclusive probes

High-luminosity pp programme

arXiv:1708.05994 with 3/fb.

- heavy-flavour physics programme requires: vertex association, full software trigger, luminosity: 300 /fb
- unique programme to constrain hadronisation at high-multiplicity
- discover multiple heavy-flavour as benchmark for ion-ion studies
- constrain parton heavy-flavour kinematics for heavy-ion studies

Collider QCD measurements for initial state and hadron

structure

- forward acceptance: fully-instrumented for low-x physics frontier in parallel with EIC running
- pA low-mass DY statistically limited in Run 3/4: clean low-x physics with larger lumi
- $ightharpoonup \gamma$ production and correlations in p-nucleus and pp
- high statistics UPC in pA/AA for gluon tomography at low-x: exclusive vector mesons (from phi to Upsilon), continuum dimuons, χ_C states for hadron structure more inclusive photo-production channels to be explored

Addressing open questions with LHCb U2: fixed-target as energy lever arm

- energy lever arm: crucial for nucleus-nucleus studies
 - \rightarrow one of keys for our current understanding of heavy-flavour dynamics
 - → RHIC: precision limitations for heavy-flavour
- LHCb well adapted due to forward geometry for fixed-target at $\sqrt{s_{NN}}=100~{
 m GeV}$
- ▶ proton-nucleus studies for high-x physics, polarised target: from Run 4 on → physics case by AFTER consortium

Interesting areas of research not covered

- light-flavour production collider as well as fixed target: complementary acceptance to midrapidity collider
 - \rightarrow connection to astroparticle physics and dark matter searches
- ▶ g 2 of tau in UPC: boosted taus in empty events
- ultra-low-pt photon measurement with conversions in pp/pA:
 Low-theorem
- push down light-by-light scattering in mass at forward rapidity

Summary

- broad programme for heavy-ion physics in 2030ies with LHCb:
 - heavy-flavour in nucleus-nucleus with the dedicated heavy-flavour experiment at the $\ensuremath{\mathsf{LHC}}$
 - a detector for fixed-target ion-ion studies with high-luminosity
 - small collision systems with high-lumi pp, pA to address collectivity, jet universality breaking and precision QCD
 - a low-x frontier programme in parallel to EIC in UPC (pA, AA) and pA
- open for unidentified areas of interest with unique kinematics, full software triggering and vertex association
- crucial and unique contributions to heavy-ion physics:
 heavy-flavour and quarkonium transport, hadronisation, initial state
 - \rightarrow as function of rapidity and collision energy

Conclusions

- a detector optimised for intermediate scales at the interplay between soft and hard: a joker card for QCD
 - → U2 unique opportunity to make LHCb fit for ion-collisions
 - → make tracking work for nucleus-nucleus including PbPb as worst case
 - ightarrow use calorimeter for unique exclusive decays and pA studies
- first physics feasibility & detector studies with our colleagues: LLR, Subatech, Saclay, LPNHE, IJCLab and other LHCb colleagues!