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Heavy quarkonia in hot matter

A deconfined color medium (QGP) is created in heavy-ion collisions. Effects on quarkonia:

@ Dissociation:
o ‘'Historical" effect: Debye screening + sequential suppression

@ Laudau damping, dynamical screening ...
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Metivations and challnges
Heavy quarkonia in hot matter

A deconfined color medium (QGP) is created in heavy-ion collisions. Effects on quarkonia:

@ Dissociation:
o ‘'Historical" effect: Debye screening + sequential suppression

@ Laudau damping, dynamical screening ...
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Introduction Motivations and challenges

Heavy quarkonia in hot matter

A deconfined color medium (QGP) is created in heavy-ion collisions. Effects on quarkonia:

@ Dissociation:
o ‘'Historical" effect: Debye screening + sequential suppression

@ Laudau damping, dynamical screening ...
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Motivations to observe B. in PbPb collisions

o DiSSOCiation: Recombination (uncorrelated)
binding energy between that of J/¢ and T

Regeneration

Dissociation (correlated)

R .
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Energy loss & ¢ G. Falmagne

Hard Processes
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Motivations to observe B. in PbPb collisions

Recombination (uncorrelated)

@ Dissociation: -
binding energy between that of J/¢ and T B Regeneraton
Dissociation (correlated)
@ Recombination of b with uncorrelated ¢ quark? f
small 055 = enhancement at pt < mp, . °\ b P
could be dramatic ! ';, /7
(2 < Reppy < 18 in PRC 87 (2013), 014910, Energy 'OSS '(/°

Hard Processes

~ 500 in PRC 62 (2000), 024905)
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Motivations to observe B. in PbPb collisions

Recombination (uncorrelated)

@ Dissociation:
binding energy between that of J/¢ and T

Dissociation (correlated)

B
f Regeneration
@ Recombination of b with uncorrelated ¢ quark?

small 055 = enhancement at pt < mp,

< °\ b b Jy

could be dramatic ! »;, /7
. v ¢ G. Falmagne

(2 < Rpepy < 18 in PRC 87 (2013), 014910, Ereray '°S‘°‘ |/

~ 500 in PRC 62 (2000), 024905) Hard Processes

5.02 TeV pp (27.4 pb™) + PbPb (530/404/368 pb™)
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How to reach a first observation in heavy ions?

o Use leptonic channel Bf — (J/1 — p ) vy, because
branching fraction = 20 times hadronic channel B — J/¢ 7t

@ Signal = displaced vertex of three muons AT
Simulation Preliminary
@ Trimuon mass € [3.2,6.3] GeV 5000

—> Need good understanding of backgrounds

.
a
@ Partially reconstructed M+ my mg,
=—> use visible (trimuon) kinematics

2000/

+ 1000
W /
< ;’H ! Lovaalaay

0
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Analysis strategy

] Selection + BDT Accep_ta_nce
BDT B(Template fit ; and efficiency
corrections

second step

pr correction of MC
from measurement

cross-sections
Rpbpp

Final
Acc&Eff
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Analysis strategy

o .
Selection + BDT @ BDT B{Templatefit ;
@ Trimuon mass templates

for background and signal second step

Acceptance
and efficiency
corrections

@ Template fit of trimuon mass.
Nuisance parameters for background uncertainties.

pr correction of MC
from measurement

cross-sections
Rpbpp

Final
Acc&Eff
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Analysis strategy

@ Selection + BDT Acceptance
BDT B{Template fit}j and efficiency
. corrections
@ Trimuon mass templates
for background and signal second step
@ Template fit of trimuon mass. pr correction of MC
. A from measurement
Nuisance parameters for background uncertainties.
@ Correct yields for acceptance and efficiency
1 Final cross-sections
=3 p7 spectrum correction of MC Rebro
@ Run second step of analysis with corrected MC

= final acceptance and efficiency
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Analysis sirategy
Analysis strategy

Selection + BDT @ P B(Temphtefitg

@ Trimuon mass templates
pr correction of MC
from measurement

for background and signal second step
Final
Acc&Eff

Acceptance
and efficiency
corrections

Template fit of trimuon mass.
Nuisance parameters for background uncertainties.

Correct yields for acceptance and efficiency
=3 p7 spectrum correction of MC

Rebpp

Run second step of analysis with corrected MC
= final acceptance and efficiency

@ Result: Rpppp(Bc) in two pr or centrality bins, with some rapidity cuts

Note: We blinded 3/4 of PbPb data signal region until a late stage, to limit analyser bias.
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Acc&Eff tag-and-probe
m: @fac(ors

Nuisance parameters:
normalisation modifiers
shape modifiers

Fiducial cuts JI¥ choice
s> o e opwoup>
BDT/mass ||
BDT-dependent decorrelation
« fre :

7 Signal
1d:
Acceptance and
Efficienc

ancillary

Acc&Eff

Fit method

Run oniatrees variations

Preselection

Fit method
variations

Single muon:
acceptance cuts
+ selection

a priori First step
normal

Second step

N -
Re-run with
\ 1 centrality

MC pr correction
from 2nd-step
measurement

MC pr correction
from measurement

bin-to-bin
correlations

3rdstep

Statistical test
+ interpretatiol

toy pr variations]



CMS data, trigger, MC

@ Signal signature =
3 muons from a displaced vertex, with an opposite-sign pair in the J/1) peak region
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CMS data, trigger, MC

@ Signal signature =
3 muons from a displaced vertex, with an opposite-sign pair in the J/v) peak region

PbPb 368 pb (5.02 TeV) PbPb 368 b (5.02 TeV)
ARSI ARAAN EERA RAARR T (e e S S R
1400 1.8 <y <24 CcMS 7 10 § 18 <y <24 cMS ;
45 <p* <55Gevic 105E 45 <p}" <55 Gevic -
) CMS advantages: {12007 Cent. 0-100% 1 _ 45 Cent. 0-100%  Data El
%1000, Data ] £ 10§ A :Tr.:l:l'm E
o excellent muon momentum & Hlrw A £ E/J.rﬁt.fﬂ”ham
. & 800F T Sl ora t hadrons / \ 1 s10°r Background
and vertex resolutions S Background \ > 10k
~ 600 £
. . 2 5
@ high luminosity £ 400 &
200 -
@ 2017 pp and 2018 PbPb data 86272829 3 31

M., (GeV/c)

( Lpppy = 1.61 b~ Y, L, =302 pb~t)
with dimuon trigger

e BCVEGPY specific generator for B, MC. Standard PYTHIA8 for (non)prompt J/1) MC.
EVTGEN1.3 for decays. Normalisation from previous measurements (pp only for B.).
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@ Selection + BDT

Analysis strategy

Acceptance
and efficiency
corrections

@ BDT B[Template fit ;

second step

pr correction of MC
from measurement

cross-sections
Rpppb

Final
Acc&Eff




Data and selection

Selection

@ Cut selection on these variables:
Trimuon and dimuon vertex probability
Lifetime significance L/o(L)

dz.pv (1)

angle ps, — [PV, SV

Zi,j:l,z,s AR(pui, 1)
Meorr(pupet), corrected for p (v)
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Selection

@ Cut selection on these variables:

Trimuon and dimuon vertex probability

Lifetime significance L/o(L)

dz.pv (1) v B,
angle ps, — [PV, SV
Zi,j71.243 AR(piy 1)

Meorr(pupet), corrected for p (v) ROC curve (lower cut)

E cms
Preliminary

e Train BDT (TMVA), separately in 2 pr bins and in
two random halves.
Checked data vs MC fitted distributions. ok
Use 8 violet variables, including: 04F noc ot

0.3F —— J/y sidebands (int=0.94)
0.2E = NonPrompt Jip MC (int=0.94)

0.7

background rejection
o
>

0.6

@ L significance of displacement from PV

AR(J/4) —— Prompt JAp MC (int=0.96)
AR(pyy = )+AR(pyy, 1nt) OF — rotated Iy (int=0.94)
al FERE U FEET T IUUTE FRRE FRUTY R S
@ Imbalance between pr(uw) and pr(J/v) 01762765704705768707 08 69
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Who is the J/7

@ In a trimuon of charge +1, there are 2 opposite-sign (OS) dimuons
@ Problematic if the 2 pairs are in the dimuon mass peak (SR) or sidebands (SB) region

@ Dimuon mass criterium would bias fake J/4 background

Dimuon mass of unambiguous candidates PP
= BDT binl
600 —eoThmn
++ — BT bin2
500 — BT bin3

400

SB|| SR+ ||SB

300

i + - S . | |
97728 29 3 31 33 34
M(up) [GeVv]

Y
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Who is the J/7

@ In a trimuon of charge +1, there are 2 opposite-sign (OS) dimuons
@ Problematic if the 2 pairs are in the dimuon mass peak (SR) or sidebands (SB) region

@ Dimuon mass criterium would bias fake J/4 background

Dimuon mass of unambiguous candidates PP
z
600? + — BDT binl
=3 Keep both pairs as trimuon candidates, with . 1 —egrone
500 — BOT bin3

weights of sum 1, corresponding to probability of being a J/v !
" |SB SR+ | |SB

300F

200F + +
++
100 + ++++
[ I j;f ++1

-
i + - S . | |
97728 29 3 381 32 33 34

M(up) [GeVv]
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Who is the J/7

@ In a trimuon of charge +1, there are 2 opposite-sign (OS) dimuons

@ Problematic if the 2 pairs are in the dimuon mass peak (SR) or sidebands (SB) region

@ Dimuon mass criterium would bias fake J/4 background

600

—> Keep both pairs as trimuon candidates, with
weights of sum 1, corresponding to probability of being a J/

500

@ Weights extracted from unambiguous trimuons

in selected data 200

@ Applied to trimuons having 2 OS pairs in SR or SB

400

300F

Dimuon mass of unambiguous candidates PP

= — BDT binl

++ — BT bin2
C — BT bin3
- |SB|| SR+ ||[SB
L + +

++
L + 4+

F
T

7 28 29
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Data and selection

Analysis bins (from acceptance and efficiency)

PbPb

@ Acceptance and efficiency @
from (pr-corrected) signal MC

+ tag-and-probe single-muon corrections

CMS
Preliminary

00 02040608 1 12141618 2
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Analysis bins (from acceptance and efficiency)

@ Acceptance and efficiency
from (pr-corrected) signal MC
+ tag-and-probe single-muon corrections

e Adapt binning to CMS shape (and need low p7)

=—>» Choose two p7 bins with rapidity cuts:
@ 6 < pr <11 GeV with 1.3 < |y| <23
e 11 < pr <35 GeV with 0 < |y| < 2.3

@ Also two centrality bins 0-20% and 20-90%, Sraiminary
integrated over (pr,|y|) bins
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Analysis strategy

Acceptance
and efficiency
corrections

@ BDT B[Templatefit ;
Trimuon mass templates

for background and signal second step

pr correction of MC
from measurement

cross-sections
Rpppb

Final
Acc&Eff




Categorisation of backgrounds

@ Is the chosen dimuon a true J/v?

NO = (1) Use dimuon mass sidebands (data-driven fake J/1))
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Categorisation of backgrounds

@ Is the chosen dimuon a true J/v?

NO = (1) Use dimuon mass sidebands (data-driven fake J/1))
YES |

@ Do the J/v and p come from the same (displaced) decay vertex?

NO —> (2) Data-driven rotated J/i) sample
(rotate the momentum and flight distance of all J/4's in data)
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Categorisation of backgrounds

@ Is the chosen dimuon a true J/v?

NO = (1) Use dimuon mass sidebands (data-driven fake J/1))
YES |

@ Do the J/v and p come from the same (displaced) decay vertex?

NO —> (2) Data-driven rotated J/i) sample
(rotate the momentum and flight distance of all J/4's in data)
YES |

@ Third muon is mostly a misidentified hadron
(3) Non-prompt J/v) MC describes this B — J/1 h* X correctly
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EEEEAGILEEN  Trimuon mass templates

Background properties

o J/1) — u from # vertices =3 use rotated J/¢) sample

@ Rotate (around primary vertex) the flight direction and momentum of data J/4
°

°

Data-derived normalisation in PbPb

Leftover J/4 — u correlations in pp == vary rotation angles

pp (302 pb ™, 5.02 TeV)

S —e— Data
250 Preliminary lowBDT | == Signal
@ J/v and muon/hadron from e mmeowx | |® Fake J/1
same : from MC T ke e X = dimuon mass sidebands

@ Free normalisation in fit fom 70205 @ Data-derived normalisation

(misID rate)

Fracugromna = §

@ Allow variation between
lower (my,, < my,y)
and upper sideband

@ Cutoff at 5.3 GeV

@ Very small in PbPb

T | (M > myyy)

2 f— ——
2.

35 4 a5 s b5 6”6.5”‘7“;;‘7(;5\/
pp pr-integrated fit P GeV]
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Analysis strategy

BDT B[Template fit ;

second step

Template fit of trimuon mass.
Nuisance parameters for background uncertainties.

pr correction of MC
from measurement

Final
Acc&Eff

Rpppb

cross-sections

Acceptance
and efficiency
corrections




Template fit (pp)

o Likelihood fit over 3 BDT bins + 2 pt or centrality bins

@ Nuisance parameters to account for background uncertainties:
vary shapes and some normalisations + template stat. uncertainties
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Template fit Results

Template fit (pp)

o Likelihood fit over 3 BDT bins + 2 pt or centrality bins

@ Nuisance parameters to account for background uncertainties:

vary shapes and some normalisations + template stat. uncertainties

PP (302 pb™, 5.02 TeV)

pp, 11 < p7 < 35 GeV

pp (302 pb™, 5.02 TeV)

PP (302 pb”, 5.02 TeV)
> CcMS —e— Data > [ —e— Data S100° oys —e—Data
& 250 Preliminary lowBDT === Signal & 100 Preliminary ~ medium BDT === Signal 3 Preliminary high BDT | === Signal
© ~—— Rotated J/y + X b —— Rotated J/ly + X = oy —— Rotated J/y + X
- o
s B JyX iy BoJwX S 8 B JyX
% 200/ = Fake Jiy + X % 80 = Fake Jly + X > —— Fake J/y + X
€ Wrong-sign € Wrong-sign € Wrong-sign
3 8 8 e
150# m Ty = 0265 60| Fyg = 0411 Fyg = 0324
o Fracrauns = 0817 Foacrouns = 0149 Fyacrouns = 0.034
i S//S:B-65 s/(s4B=158 40 /(5B =164
100 - . 40 N "
i purity = 0.164 [ purity = 0.625 purity = 0.850
I NEgli =258 r Nty = 401 L Nl =316
50 20 20
_ Lk 1 . R Sy O b 5 S _ [ —
S 20 S 2 5 2"
3,2?__-—-‘——- - 372 - - — g_ig';_‘__-____‘_
35 4 45 5 55 6 6.5 3.5 4 4.5 5 55 6 6.5

35 4 45 5 55 6 65 7, 75
m [Gev]
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Template fit Results

Template fit (PbPb)

@ Likelihood fit over 3 BDT bins + 2 pt or centrality bins

@ Nuisance parameters to account for background uncertainties:
vary shapes and some normalisations + template stat. uncertainties

PbPb, 11 < p7 < 35 GeV

PbPb (1.61 nb", 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV)

PbPb (1.61 nb™, 5.02 TeV)
s cMs —e— Data > [ —e— Data s cMS —o— Data
8 Preliminary lowBDT | === Signal 8 Prelimina medium BDT | === Signal & 25 Preliminary high BDT | === Signal
o 60/ —— Rotated Jly + X = o 1 —— Rotated J/ly + X = 1o —— Rotated J/y + X
2 B JyX 2 B Jy X 3 B JyX
3 50 === Fake Jiy + X 5 12 “— Fake Jly + X 3 20 —— Fake Jiy + X
€ Wrong-sign € Wrong-sign € Wrong-sign
3 =3 3
8 g 8
40 e = 0.246 Fognas = 0390 15 Foga = 0.364
Frackgrouna = 0.926 8 Foacsgrouna = 0.062 Foacsgrouna = 0.012
3o 5/VS+B=09 6: s/\s+B=4.0 C S/\S+B=438
purity = 0.048 r purity = 0.545 10 purity = 0.858
200 B NP g r N 7
i - E 5
_ : L L — E_‘,_‘—'_L—« I T _ =
3 2. S 2 S 2
aig — — e — — aig;_ —— e —— - aig e ———
35 4 45 5 55 6 6.5 7 75 3.5 4 45 5 55 6 6.5 7 7.5 35 4 4.5 5 55 6 6.5 7 75
m** [GeV] m* [GeV] m** [GeV]
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Template fit (PbPb, centrality)

@ Likelihood fit over 3 BDT bins + 2 pt or centrality bins

@ Nuisance parameters to account for background uncertainties:
vary shapes and some normalisations + template stat. uncertainties

centrality 20 — 90% (pr-integrated)

PbPb (1.61 nb™, 5.02 TeV)

PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV)
% " cms —e— Data %‘ 25 cMs —o— Data % " cms —e— Data
& 140 Preliminary low BDT | = Signal o] Preliminary medium BDT | = Signal & 12 Preliminary highBDT | = Signal
o —— Rotated Jly + X = o - —— Rotated J/y + X 1o —— Rotated J/y + X
3120 o BoJwX g 20 o BoJwX ;’- 10 o BoJwX
> —— Fake J/y + X > —— Fake Jiy + X 51 —— Fake J/y + X
€ Wrong-sign € Wrong-sign € Wrong-sign
3" 3 3
© oo = 0.238 © 15 o = 0394 s 8 oo = 0.368
8 sgna = 0 s = 0- gna = 0-
Fyasirouns = 0929 Fyncirouns = 0.063 6 Fyaerouns = 0.008
60. 5//s4B=05 10 s/(siB=27 S/(S4B =40
purity = 0.020 purity = 0.329 4 purity = 0.78
40 Nogna =13 Nl = 22 Nl =20
L 5 |
20 ’:{_’_fﬁ: ) 2
= = : - i =
E 3 5
Q_§____—____ B — Q__é _ —— — Q_§ —_—
35 4 4.5 5 55 6 6.5 7 7.5 35 4 4.5 5 55 6 6.5 7 7.5 35 4 4.5 5 55 6 6.5 7 75
e [Gev] m (Gev] m (Gev]
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Fit method variations

CMS Preliminary

wider signal-enriched BDT bin e —_——— —_— —_— —_— —_—
thinner signal-enriched BDT bin =~ @ — — R S — — &
finer mass binning - L g L g L g L
coarser mass binning Y s ® ° °
0Tt shaps o, MEstts 8073 - . . °
BDT-integrated shape norm, no MCstats BDT2-3 . ot — T P
Shape regularisation, no MCstats BDT3 ~ — @ — — — e—— R S —
Shape regularisation, no MCstals BDT28 ~ ——@————— — —— — ——— —
SOT uncorrelaed rom mase, wio 80T bint |~ @ P . -
BDT mass —_—— | —e—— — —_— —_———
wio BDT bin1 » o s s s
romnel ST T e o T e T T [N NRA RRE AR SRR RRRERRRE I NSTTI FRAD (Tl
08 1 12 14 08 0.9 1 1.1 1.2 )85 0.9 095 1 105 1.1 1.15 0.95 1 1.05 0.8 1 1.2 14 0.8

0.8 1 1.1 1.2
PbPb PbPb PP PP PbPb/pp Pbe/;‘z/;na"on / nominal
p, bin1 p, bin 2 p, bin1 p, bin2 p, bin 1 p, bin 2

@ 11 variations of fit method: decorrelate BDT from mass, change mass or BDT binning, change
treatment of stat. uncertainties on templates, ...

@ Systematic uncertainty = RMS of the 3 orange categories of methods

@ Violet: only checks (consistent with nominal)
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Significance of observation in PbPb

)
(@}
<
2]

r2/r2, .
2 x ANLL

@ Coloured blob is 5o significance,
from the PbPb pr-dependent-fit likelihood

Preliminary

@ Include the fit method systematics
—> Significance of observation of
B. in PbPb collisions is well above 50

pt bin 2 norm.

@ Other uncertainties are multiplicative:
@ Acceptance and efficiency

@ Tag-and-probe bbb L L
0 02040608 1 12 1.4 1.6 1.8 2 22
rl/r]hes(

o Luminosit
uminosity PbPb pT bin 1 norm.
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Analysis strategy

Acceptance
and efficiency
corrections

BDT B[Template fit ;

second step

Correct yields for acceptance and efficiency
=3 spectrum correction of MC

Run second step of analysis with corrected MC
= final acceptance and efficiency

pr correction of MC
from measurement

cross-sections
Rpppb

Final
Acc&Eff




T sizps
Acceptance and efficiency: iterative procedure

@ Wide bins =% « x ¢ is very sensitive to the assumed pr spectrum shape

@ Need to correct with our measurement the pt spectrum of MC, before recalculating a X ¢
= Re-run the whole analysis with corrected MC
=> Correct MC again

= final acceptance and efficiency
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Acceptance and efficiency ERRVRSE

Acceptance and efficiency: iterative procedure

@ Wide bins =% « x ¢ is very sensitive to the assumed pr spectrum shape

@ Need to correct with our measurement the pt spectrum of MC, before recalculating a X ¢
= Re-run the whole analysis with corrected MC
=> Correct MC again
= final acceptance and efficiency
@ For pr-integrated bins:

_varied ratio to MC spectrum fit -
= dpT trum fit E) =
y16‘|d5 varled pT spectrum f = varied pT correction of MC uncertalnty'
RMS of varied a x ¢
l (== dominant)
... varied .
measik;zg acceptance and efficiency @ For pr bins:
y i corrections correlations between o x € and
other uncertainties
= Full uncertainty =
LE it of measured pT RMS of varied observed yield

x varied « X € correction
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Bl Tag-and-probe

o
w

. . S 4.5 Uncertainty CMS
Summary of uncertainties B
S [ BBy
% O.ALlTag»and-‘probe
. . . . © [ BAcc xEff
e Fit uncertainty (statistical+systematic) | Bitmetnos
.3— Hfit
(dominates in p7 bins) - Mo
. .. . 0.2}
o Fit method variation p1 binsf
. 01—
@ Acceptance and efficiency E
(dominates pr-integrated bins) Ot o2 PoPo TP g e i R
.. S 0.4 Uncertaint CcMS
e Tag-and-probe (scale factors on efficiency) 5. L arinoshy<Ciauber Preliminary
Sl S R /TR
E
®

@ Luminosity + Glauber model

o
N
a

@ Contamination from other B, decays:

0.2 Htotal
Be = J/Y(m— pX)v, o
Be — (c& — J/v X) pu, cenjcrallty b|n§l
—> estimated < 4.5% + integrated,
and partially cancels in Rpppp d T e
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Analysis strategy

Acceptance
and efficiency
corrections

°
@ BDT B[Template fit]:;

o
second step
Qo pr correction of MC
from measurement
° Final cross-sections
Acc&Eff Rpppp
[+

@ Result: Rpppp(Bc) in two pr or centrality bins, with some rapidity cuts



Cross sections

PbPb (1.61 nb™ + pp (302 pb™), 5.02 TeV

= F
g [CMS B — (W - gty
g [ Preliminary Centrality 0-90%
— N 13<y"™ <23 |y <23
e T ‘o o . . .
s53 - PP PP @ Scale corrected yields by luminosity (pp)
Sfgo- e Mo W eoro and Ny Tpbpy, (PbPb)
A L
2 o =068 @ Correlation between bins fully calculated
_— PP =0.44
. @ pp cross section integrated on pr used for cen-
o> F . .
@ ° trality bins
S o8
LA
x v b b v b b |
35
& Pl [GeV]

19 G. Falmagne Observation of B. in PbPb with CMS



First prpb(Bc)!

PbPb (1.61 nb™) + pp (302 pb™), 5.02 TeV PbPb (1.61 nb™ + pp (302 pb), 5.02 TeV
it + _ g [ + ,
& y%?mmary B — (P - wr )y, & y%ﬁmmaw B - (I - Pt prv,
I -00Y
Centrality 0-90% 6<pM<11Geva13< ™ <23
25 Ce 1.3< |y <23 25 or 11 <pl <35 Gev & |y <23

o [y <23

N
L B B B
N

15 p,,=042 15 {

1T 1T }

[ ‘} [ cent. 20-90% Cent. 0-20%
0.5 05 _

L L p,, =056

S S B B B N N B b e b
o 1 15 2 0 50 100 150 200 250 300 350 400

P [GeV] Noan
o Difference between two pr bins: 1.60 significance = Points at softening of pt
spectrum in PbPb collisions

@ Uncertainties: bin-to-bin fully-uncorrelated VS total
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Comparison with open and hidden heavy flavour at CMS

B. and B modifications are B. much less suppressed than heavy quarkonia
similar, and less suppression than —> different mechanisms at play than
light hadrons + B and D hidden heavy flavour?
5.02 TeV PbPb (0.37-1.6 nb™) + pp (27-302 pb™Y) 5.02 TeV PbPb (0.37-1.6 nb™) + pp (27-302 pbY)
3 2015, centrality 0-100% 3 2015, centrality 0-100%
L PCMS e h'p<1 L CMS % 18<ly<24
L Preliminary [ Preliminary prompt J/Y
F = DOJy<1 F X |yl<24
2'5: 4 B'ly<24 2'5: WE2S) = lyl<16
r + Bllyl<24 r Y(1S) = |y|<24
2 2017-18, centrality 0-90% 2 i Y(2S) 4 |yl<24
< F H B (visible kin.) < . 2017-18, centrality 0-90%
r ® 13<|y<23 <, [ : B ® 13<ly|<23
o 1-5: o <23 a4 1‘5: (visible kin.) " o |y|<2.3
I Tas and lumi. F
[ uncert. (2015) i | r
= , 1
N oot [ ; e
: + é t ...*. + C @
0.5fzessess s * ' é,;u' o5 * et +
i 0:‘"_£,, + " Bl x> x x
b \ \ e 38 v e sovn IV IO
| 0 0 %510 15 20 25 30 35 40 45 50
p. [GeV] p. [GeV]
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Comparison with one theory prediction

PbPb (1.61 nb™) + pp (302 pb™), 5.02 TeV PbPb (1.61 nb™) + pp (302 pb?), 5.02 TeV
g [ + - s r + -
& ySMlS ) Be — (M — )y, & 3—SM|$ _ Be — (M - prp)pty,
[ Preliminar y [ Prelimina
[ y Centrality 0-90% [ Y ee P <11Geve13< |y <23
251 = —e— CMS,1.3<y"| <23 25 or 11<pi™ <35Gev & ly"| <23
5 [ e cms
r ~o- cMms, [y <23 E
P oF - Yao et al., JHEP01(2021)046 3
C - Yao et al., JHEP01(2021)046 L
151 15¢
r Py, =042 [ i
[ § [ Cent 20-90% Cent. 0-20%
05~ 05~ ,,=056
r r |
QL | o S P Y W S WU .. F
0 5 1 0 50 100 150 200 250 300 350 400
i [GeV] Noan

@ Received one theory contribution yet, from Yao et al:

@ Transport model including correlated and uncorrelated recombination.
@ B (not trimuon) kinematics are used + no feed-down included

@ Lower values than measurement. But no recombination of excited B, states is included...
=—> importance of recombination in B, production (including cross-talk with excited states) ?
22 G. Falmagne Observation of B¢ in PbPb with CMS



Other (phase-space-integrated) predictions

@ TAMU transport model (B. Wu, Z. Tang and R. Rapp, in prep.,
based on PRC96(2017)054901 & Nucl.Phys.A 859 (2011) 114)

@ CAVEAT: inclusive (pr-integrated)
(whereas pr > 6 GeV ==p expected drop of recombination)

@ Liu Greiner Kostyuk (PRC 87

(2013), 014910)

@ p7 dependence seems doable

@v-u () V=F 125

2T 2T
Pb-Pb,VS\N=5.02TeV, |y|<0.9  dog_/dy=82nb 3 Pb-Pb,VSyN=5.02TeV, |y|<0.9  dog_/dy=150nb
Shadowing 10-30% E| Shadowing 10-30%
15F 3 15
< <
L e 4 <
o o
05 F Reg =
oble v v v b ik ol v v i v T
0 100 200 300 400 0 100 200 300 400
Npart Npart

@ Schroedter, Thews, Rafelski:
~ %500 enhancement in
PRC 62 (2000), 024905
(without suppression effects)

0.07
006 —
0.05 AN 1

RN ]
2004 N\, ]
& o0sf - 3

S ]
0.02 ™ -
001f = 1
ol ) ;
02 03 0.4 05 06
T[GeV]
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Conclusion

e First observation of the B. meson in PbPb collisions (well-above 5¢ significance)
@ Only one theory prediction yet, showing (much) more suppression than our result

@ Results may point towards importance of recombination mechanism in B, production
+ can help disentangle enhancement and suppression mechanisms in the QGP!

5.02 TeV PbPb (0.37-1.6 nb™) + pp (27-302 pb'Y) 5.02 TeV PbPb (0.37-1.6 nb™) + pp (27-302 pb'Y)
3+ 2015, centrality 0-100% 3+ 2015, centrality 0-100%
F CMS s h'pi<1 F CMS ¥ 18<ly|<24
[ Preliminary [ Preliminary prompt J/Y
E = D% jy<1 L x <24
2'5: ¥ By <24 2'5: PES) = |yl<16
r + BYly<24 r Y(S) = lyl<24
2 2017-18, centrality 0-90% 2 Y(2S) 4 lyl<24
P F S B (visible kin.) < 5 2017-18, centrality 0-90%
C H e 13<ly<23 r B! ® 13<|y<23
1.5 g 1.5 c
o C o |y<23 o C (visible kin.) ~ @ |y|<2.3
i i il T
L } - T , deeet + [ .
0.5[pwssisng * e o5 * ‘ oy +
.5i@s . e .5
" ':‘".L,,’;" } :,-w!.“ux e
O mmu? ﬁm\mﬁuu*uumumu\mmm
1 10 102 % 15 20 25 30 35 40 45 50
p, [GeV] p, [GeV]

24 G. Falmagne Observation of B¢ in PbPb with CMS



BACKUP



Yao et al. prediction, based on JHEP01(2021)046

@ Recombination of excited states (‘cross-talk’ recombination) not included in present
prediction

o Changes Rpppp(T(nS)) by a factor of ~ 2... But a factor of 5-107?

— IS theory [ 2Ssyst === 1S w/o cross recombination
1.0 I 18 syst ¢ 28 stat 10 1S syst
¢ 1S stat 3S theory ¢ ISstat

08 —— 2Stheory  W#Z 3S95% CL 0.8 ==+ 25 w/o cross recombination
. I 25 syst
¢ 2Sstat

< 0.6 35 w/o cross recombination
< 4 35 95% C
~ w7 35 95% CL

0.4

0.2

¥
0.0 -
0 100 200 300 400
N part N part
(a) With cross-talk recombination. (b) Without cross-talk recombination.
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Explicit cuts

@ Fiducial B, XS cuts:
0<|y|<13&11 < pr < 35 GeV
OR 13 < |y| <2.3&6 < pr <35 GeV

@ Loose HybridSoftID muon acceptance cut:
(pr =3.4)|[(In] > 03&|n| < 1.1& pr > 3.3)
[(In] > 1.1&|n| < 1.4& p7r > 7.7 — 4.0 |])
[l(In] > 1.4&|n| < 1.55& pr > 2.1)
[(|n] > 1.55&|n| < 2.2& pr > 4.25 — 1.39  |1|)
(| > 2.2& |n| < 2.4&pr > 1.2)

@ Tight HybridSoftID+Trigger muon acceptance cut:
In| <2.4&
((In] < 1.2& p7 > 3.5)
(12 < |9 &n| <2.1& pr > 5.47 — 1.89 * |n|)
(2.1 < [n| & pr > 1.5))
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Single-muon acceptance + selection
e Hybrid-soft is:

@ Two muons must pass @ Passes global and tracker muon ID

the J/4 trigger, @ dy < 0.3 cmand d, <20 cm
the third one only Hybrid-soft @ tracker layers with measurement > 5
@ pixel layers with measurement > 0
Hybrid-soft + trigger Hybrid-soft selection
(Reco+HybSoftiD+Trigger)/Gen muons (PbPb) (Reco+HybSoftID)/Gen muons (PbPb)

Genp, [GeV]
o
efficiency
Genp, [GeV]
efficiency

PbPb
single-muon
efficiencies:

25
Gen |

@ Single-muon acceptance cuts from efficiency >10%

25
Genl

@ looser acceptance cuts for the non-triggering muon
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normto 1

BDT variable

©
©

PbPb

BDT ROC curve (lower cut) BDT ROC curve (lower cut)
| § F 3 §
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o S oof CMS - 2 014 siona 5 0of CMS
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H 5
— rotated J/p g —— Prompt J/y MC g o
H 0. —— rotated JIy s
8 g
0.6
0.08|
05F
6 £
09 4 Roc BDT
ROC BDT 0.0d 0.3F —— J/y sidebands (int=0.94)
o —— Iy sidebands (int=0.86) 0.2 —= NonPrompt J/ys MC (int=0.94)
o NonPrompt Jiy MC (int=0.94) 0.02] b PrompLY MC (ini=0.96)
E —— rotated J/y (int=0.89) F —— rotated J/y (int=0.94)
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Check of BDT distributions

@ After the second-step fit, we compare the BDT distribution in data
VS the one of the sum of postfit templates

@ Agreement within uncertainties in PbPb.
In pp, use the ratio as weights applied to all templates before a final re-fit.

=

PP

2nd p1 bin
(after
weighting)

postiit yield

datal(sum postiit templates)

G. Falmagne

PbPb
2nd pt bin

"
o)

E ==

— data

—— sum of postiit templates

Observation of B in PbPb with CMS



Nuisance parameters

Profiling over nuisance parameters = systematic uncertainties reflected on signal
normalisation fit uncertainty
e Fake J/1 (1): morph shape to lower or upper sideband only (£20)

o flipped J/4 (2b):
@ pp: quasi-free normalisation, and 2 shape morphing parameters:

@ changing rotation angles
@ adding non-prompt or full combinatorial J/¢» MC (2a)

e PbPb: self-normalised (fixed)
+ change shape to combinatorial J/¢» MC (2a)

@ B decays (3): quasi-free normalisation
+ morph shape to include non-prompt combinatorial MC (pp only)

@ One parameter per trimuon mass bin, to vary the templates within their statistical

uncertainties
31 G. Falmagne Observation of B¢ in PbPb with CMS



riables

Template fit result (pp)

@ r1, ry close to 1 (pre-fit normalisation from previous measurements)

e signal normalisation uncertainty 5% (p7 bin 2) or 9% (pr bin 1)

@ Second-step fit is shown
pp, 6 < pr < 11 GeV

pp (302 pb™, 5.02 TeV) pp (302 pb™, 5.02 TeV) pp (302 pb™, 5.02 TeV)
s cMs —e— Data S [ cms —— Data S cms —e Data
8250 Preliminary lowBDT | = Signal & 70 Preliminary medium BDT | = Signal 3 50 Preliminary highBDT | = Signal
@ - —— Rotated J/y + X | ~— r —— Rotated J/ly + X = oy L —— Rotated J/y + X
- = o E o .
s I S BoJyX S s0- B X s By X
3, 200 = Fake Jiy + X 5 “—— Fake Jly + X > ~—— Fake J/y + X
4 Wrong-sign b4 Wrong-sign £ 40 Wrong-sign
3 3 50 - 3 L e |
2 < ] L
© 150 Fygnas = 0.255 © Fgnas = 0.421 © 2 Fygna = 0.323
C Foackgrouna = 0767 40 Foacigroms = 0-200 foacsgrouns = 0.033
L s/s:B=29 30 s/s:B=77 r s/s:B=097
100 ) £ ) 20 )
# purity = 0.079 E purity = 0.354 purity = 0.718
i N - 108 20— Al NS =170 L NS - 130
F 10 ] .—.+
10 Ly
_ [ puusonr _ e _ oz T —==x
3 2 3 2 3 2"
B = —— —= = m = B} ——mm——— g o= — 2]
35 4 45 5 55 6 65 7,75 35 4 45 5 55 6 65 7, 75 35 4 45 5 55 6 65 7, 75
m™ [GeV] m" [Gev) m" GeV]
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Template fit result (pp) (BDT-mass decorrelated)

@ As a fit method variation, decorrelate BDT from the trimuon mass

pp, 6 < pr < 11 GeV

pp (302 pb™, 5.02 TeV) pp (302 pb™, 5.02 TeV) pp (302 pb™, 5.02 TeV)
<2000 opms . Dgla %100 CcMs - D?\a %‘ CcMsS e D.ata
& qgo Preliminary low BDT | = Signal 5] Preliminary medium BDT | = Signal & 35 Preliminary high BDT = Signal
© —— Rotated J/y + X b —— Rotated J/y + X N —— Rotated J/y + X
S 160, B - Jiy X N g0 B - Jy X A B - Jy X
‘\‘;; —— Fake Jiy + X g —— Fake Jiy + X %’ —— Fake J/y + X
€ 140 Wrong-sign € Wrong-sign € Wrong-sign
3 3 3 ®
© 120 g = 0255 © 60 g = 0435 © g = 0310
100 Foackgrouna = 0701 Foacsgrouna = 0:249 20 Foacsgrouna = 0.050
|
eoi L 5/\s+B=28 40 5/\8+B=7.0 15 5/\s+B=84
purity = 0.079
€0 N = 97

purity = 0.293 purity = 0.594
Nogoa) = 166 10 “+l_\_‘ + Nl = 118

-
" -

35 4 45 5 55 6 65 7 7.5 35 4 45 5 55 6 65

pull
o

35 4 45 5 55 6 65 7, 75
m* [GeV] m [Gev]

7,75
m [GeV]
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Template fit result (PbPb)

@ Signal normalisation uncertainty 17% (p7 bin 2) or 31% (p7 bin 1)
@ Second-step fit is shown

PbPb, 6 < pr < 11 GeV

PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV)
%\350 cMs —o— Data 3 " cMs o Data % cMS o~ Data
5] Preliminary low BDT | = Signal 5] Preliminary medium BDT | = Signal @ 12 Preliminary highBDT | = Signal
© 300 —— Rotated J/y + X | oy 50! —— Rotated J/ly + X 1o —— Rotated J/y + X
2 B - Jiy X 2 B - Jiy X s B - Jiy X
> —— Fake Jy + X > ~—— Fake Jly + X > 10 —— Fake Jiy + X
£ 250 Wrong-sign T 40/ Wrong-sign € Wrong-sign
5 5 5
8 8 3 8
200 Ty = 0250 Ty = 0.393 Ty = 0357
Fyaerouns = 0912 30y Foacrouns = 0-080 6 Fyacrouns = 0-008
150 5/(5+8=03 s/\5:B=15 S/(5:B=3.1
purity = 0.008 purity = 0.119 purity = 0543
100 N1 N1 4 N1
I fiona = s = foona =
50 2
e
= T = | 1 1
S S
n%_—— —— o — —_— o.s— D
2/ v E |
35 4 45 5 55 6 6.5 7 7.5 35 4 45 5 55 6 6.5 7 7.5 35 4 45 5 55 6 6.5 7 75
m [Gev] m™ [Gev] m™ [Gev]
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Template fit result (PbPb) (BDT-mass decorrelated)

@ As a fit method variation, decorrelate BDT from the trimuon mass

PbPb, 6 < pr < 11 GeV

PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV)
= cMS —e— Data S 600 cms —e— Data s cMS —e— Data
8 Preliminary low BDT | = Signal 5] Preliminary medium BDT | = Signal ] Preliminary high BDT = Signal
o 300 ~—— Rotated Jy +X | o ~— Rotated Jy +X | 10 1g —— Rotated J/y + X
e B - Jiy X & 50 B Jiy X 3 B Jy X
5 250 = Fake Jly + X 5 = Fake Jly + X 5 —— Fake J/y + X
€ Wrong-sign € Wrong-sign € 8 Wrong-sign
= S 40 =
8 8 8
200 (o = 0.247 Fygna = 0403 o = 0.350
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150 S/Vs+B=03 S/siB=14 s/isiB=29
purity = 0.008 20 purity = 0.096 4 purity = 0.493
100! - i
I N =12 N =20 N =17
500 10 2
_ I B I B
3 2 3 3 2
B y———— — = — R — = — = 2§ e g — — —
35 4 45 5 55 6 65 7, 7 35 4 45 5 55 6 65 7, 75 35 4 45 5 55 6 65 7, 75
m [Gev] m™ [Gev] m™ [Gev]
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Template fit result (PbPb, centrality)

e Signal normalisation uncertainty 20% (centrality bin 1) or 23% (centrality bin 2)
PbPb, centrality 0 — 20% (pr-integrated)

PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV) PbPb (1.61 nb™, 5.02 TeV)
S [ ems —e— Data S 35 cms —e— Data S 220 cms —e— Data
8 250 Preliminary low BDT | = Signal & [ Prelimina medium BDT | = Signal 3 20 Preliminary highBDT | = Signal
o + —— Rotated Jly + X = o 30 —— Rotated J/y + X 1o E —— Rotated J/y + X
2 L By X 27 S BoJyX S 18 S BoJyX
= r —— Fake Jiy + X = N —— Fake Jly + X = E —— Fake Jiy + X
2 200 Wrong-sign £ 25 Wrong-sign £ 16 Wrong-sign
3 - 3 L 5 £ (B LALL R LI
<) Q Q 14
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I Frackgrouna = 0.952 Fyacirouns = 0.043 £ Fyacrouns = 0.005
i + 5/\S+B=05 5/{8+B=3.1 5/\S+B=45
100: purity = 0.013 purity = 0.325 purity = 0.791
E e w2 Wz
50—
s 5
20— gy —— — - — R S —
35 4 45 5 55 6 6.5 7 7.5 35 4 45 5 55 6 6.5 7 7.5 6.5 7 75
m** [GeV] m* [GeV] m** [GeV]
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Fit systematics and checks

Variations of fit method

11 variations of the fit method are run:

Ignore BDT bin 1 in the fit (i.e. less constrained backgrounds)

Fit with BDT decorrelated from mass (to leave discriminant power to the mass, see procedure in
backup), with or without BDT bin 1

Regularise the low-stats background shapes (3-bin floating average).
In this case, need to ignore the nuisance parameters for bin-by-bin stat uncertainties, in BDT bin 3

or in BDT bin 2&3

Normalise the shape variations to the nominal shape in each BDT bin (nominal: normalisation is

integrated on BDT bins).
In this case, need the low-stats regularisation as well (without bin-by-bin stat uncertainties, 2

cases)

Change mass binning (finer or coarser), or BDT binning ([20, 35, 45]% or [30, 45, 25]% of signal in
the 3 BDT bins)
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Uncorrelate BDT from trimuon mass
@ The BDT, when optimising, realises that most signal is in [4.5,5.5] GeV...
—> steals discriminative power from the template fit procedure

@ Decorrelate BDT value from mass (in each pr or centrality bin), and use alternative fit in the
systematics

@ Subtract the mean BDT mass (of total background) in each mass bin, and divide by the RMS of
the BDT in each mass bin:

BDTnew _ BDTo/d — mean(BDTo/d)(l\/l)

rms(BDToiq)(M)
BDTvs M(B‘:) background BDTvs M(Bc) background RMS(BDT) vs M(B ) background

T+ + )
Example of PbPb s +
2nd pr bin: o +

-0.35F H_

+
T —+

Ll
35 4 45 5 55 6 65

Lol
775
Mtrimuon)
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Toys for fit bias and uncertainty stability

@ Run 300 toy PbPb datasets from the post-fit signal+background model

@ Crosscheck the fit uncertainties (and r; — r» correlation) = variability of about 10% of
the uncertainty

@ Negligible bias in the mean of POls from toys

@ Same check done in pp too

4 w Entries 300 £ 35 Entries 300 £ 35F Entries 300
£ L = =[Meanx  0.9907 2 Mean 03861 2 Mean  0.1844
S 14 s Meany 09849 Std Dev0.03837 Std Dev_0.01267
= : : um StdDevx  0.406 30k 300~
E Std Dev
13 s = oEm Ly
25 25
20 20
151 15F-
o 10 10
s s
o ! ! 1 | ! L Lol bl
05 T 15 25 03 035 04 045 05 _ 055 14 015 016 017 018 019 02 021 022 023
., (11 uncertainty)/rt, (72 uncertainty)fr2,
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Two-steps strategy

o First step:
@ Calculate pr-dependent corrected yields with one-binned strategy and original MC

@ Fit pt spectrum == Correct pr in signal MC

@ Second step:
@ Re-run the analysis (new BDT training, check of BDT distribution, template fit, fit method
systematics, « X € corrections)

@ Again: Fit pt spectrum + correct signal MC

@ Third step:
@ Nominal acceptance and efficiency correction from 2nd-step-corrected MC

@ Acceptance and efficiency uncertainty:
@ Vary second-step pr-binned measurement within the uncertainties excluding a x € and
global unc. (luminosity and B, — J/¢'T)
= varied pr spectrum of signal MC
=3 varied o X € corrections
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