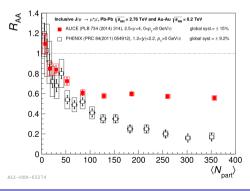
First observation of B_c mesons in PbPb (and pp) collisions with CMS

Guillaume Falmagne Laboratoire Leprince-Ringuet, Palaiseau (France)

QGP France 2021 Étretat July 6th

Heavy quarkonia in hot matter

A deconfined color medium (QGP) is created in heavy-ion collisions. Effects on quarkonia:

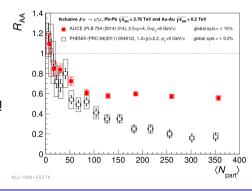

- Dissociation:
 - 'Historical' effect: Debye screening + sequential suppression
 - Laudau damping, dynamical screening ...

Heavy quarkonia in hot matter

A deconfined color medium (QGP) is created in heavy-ion collisions. Effects on quarkonia:

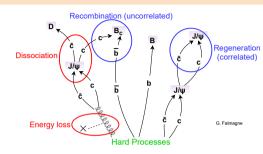
- Dissociation:
 - 'Historical' effect: Debye screening + sequential suppression
 - Laudau damping, dynamical screening ...

But ... J/ψ less suppressed at higher √s?
 → Charm recombination:
 200 c̄c pairs in 0-5% central PbPb collisions at LHC!


Heavy quarkonia in hot matter

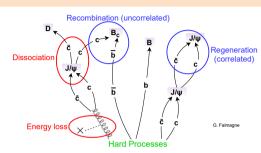
A deconfined color medium (QGP) is created in heavy-ion collisions. Effects on quarkonia:

- Dissociation:
 - 'Historical' effect: Debye screening + sequential suppression
 - Laudau damping, dynamical screening ...

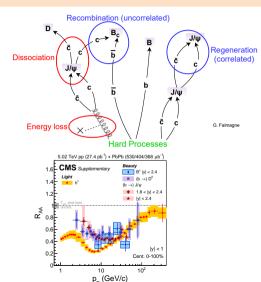

• But ... J/ψ less suppressed at higher \sqrt{s} ? \longrightarrow Charm recombination: 200 $c\bar{c}$ pairs in 0-5% central PbPb collisions at LHC!

• Energy loss on the precursor parton

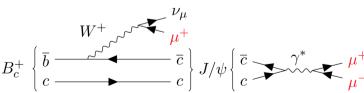
Motivations to observe B_c in PbPb collisions

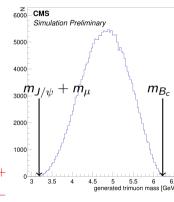

• Dissociation: binding energy between that of J/ψ and Υ

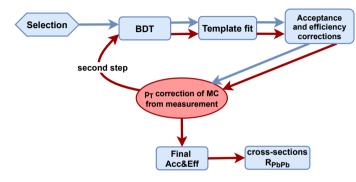
Motivations to observe B_c in PbPb collisions


- Dissociation: binding energy between that of J/ψ and Υ
- Recombination of b with uncorrelated c quark? small $\sigma_{\rm pp}^{B_c}$ \longrightarrow enhancement at $p_T \lesssim m_{B_c}$ could be dramatic!

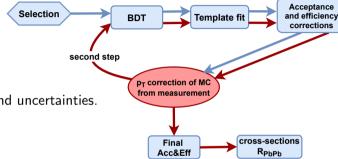
```
(2 < R_{PbPb} < 18 \text{ in PRC } 87 (2013), 014910,
 \sim 500 \text{ in PRC } 62 (2000), 024905)
```

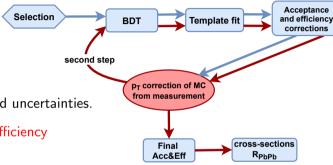


Motivations to observe B_c in PbPb collisions


- Dissociation: binding energy between that of J/ψ and Υ
- Recombination of b with uncorrelated c quark? small $\sigma_{\rm pp}^{B_c}$ \longrightarrow enhancement at $p_T \lesssim m_{B_c}$ could be dramatic! $(2 < R_{PbPb} < 18 \text{ in PRC } 87 \text{ (2013), 014910,}$ $\sim 500 \text{ in PRC } 62 \text{ (2000), 024905})$
- Partonic energy loss:Mass and color-charge dependence?
 - \rightarrow B_c = bridge between $c\bar{c}$ and $b\bar{b}$ and between open charm and open beauty


How to reach a first observation in heavy ions?

- Use leptonic channel $B_c^+ \to (J/\psi \to \mu \mu) \mu^+ \nu_\mu$, because branching fraction = 20 times hadronic channel $B_c^+ \to J/\psi \pi^+$
 - Signal = displaced vertex of three muons
 - Trimuon mass ∈ [3.2, 6.3] GeV
 Need good understanding of backgrounds
 - Partially reconstructed
 - → use visible (trimuon) kinematics




Selection + BDT

- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.

- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.
- Correct yields for acceptance and efficiency
 - \rightarrow p_T spectrum correction of MC
- Run second step of analysis with corrected MC
 - → final acceptance and efficiency

second step

Acceptance

and efficiency

corrections

cross-sections

Rohon

Template fit

Analysis strategy

Selection

- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.
- Correct yields for acceptance and efficiency
 - \rightarrow p_T spectrum correction of MC
- Run second step of analysis with corrected MC
 - → final acceptance and efficiency
- Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins, with some rapidity cuts

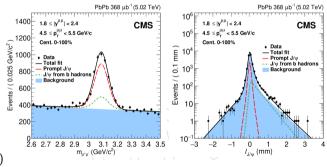
Note: We blinded 3/4 of PbPb data signal region until a late stage, to limit analyser bias.

BDT

p_T correction of MC

Final

Acc&Eff



CMS data, trigger, MC

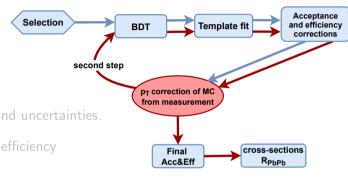
• Signal signature = 3 muons from a displaced vertex, with an opposite-sign pair in the J/ψ peak region

CMS data, trigger, MC

- Signal signature = 3 muons from a displaced vertex, with an opposite-sign pair in the J/ψ peak region
- CMS advantages:
 - excellent muon momentum and vertex resolutions
 - high luminosity
- 2017 pp and 2018 PbPb data ($\mathcal{L}_{\rm PbPb}=1.61~\rm nb^{-1},~\mathcal{L}_{\rm pp}=302~\rm pb^{-1}$) with dimuon trigger

• BCVEGPY specific generator for B_c MC. Standard PYTHIA8 for (non)prompt J/ψ MC. EVTGEN1.3 for decays. Normalisation from previous measurements (pp only for B_c).

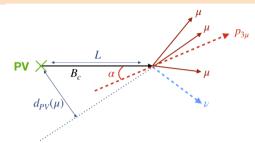
Selection + BDT


 Trimuon mass templates for background and signal

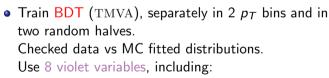
Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.

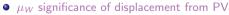
Correct yields for acceptance and efficiency
 → p_T spectrum correction of MC

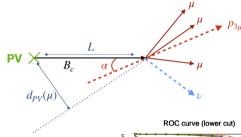
Run second step of analysis with corrected MC
 → final acceptance and efficiency

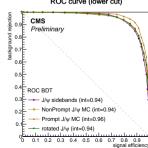

• Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins, with some rapidity cuts

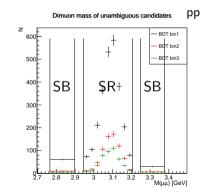
Selection


Cut selection on these variables:

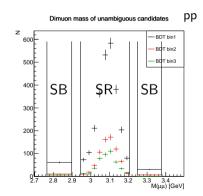

- Trimuon and dimuon vertex probability
- Lifetime significance $L/\sigma(L)$
- $d_{z,PV}(\mu)$
- angle $\overrightarrow{p_{3\mu}} \overrightarrow{[PV,SV]}$
- $\sum_{i,j=1,2,3} \Delta R(\mu_i,\mu_j)$
- $m_{corr}(\mu\mu\mu)$, corrected for $p_{\perp}(\nu)$


Selection

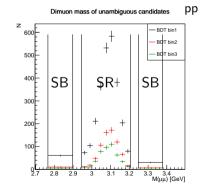

- Cut selection on these variables:
 - Trimuon and dimuon vertex probability
 - Lifetime significance $L/\sigma(L)$
 - $d_{z,PV}(\mu)$
 - angle $\overrightarrow{p_{3\mu}} |\overrightarrow{PV}, \overrightarrow{SV}|$
 - $\sum_{i,i=1,2,3} \Delta R(\mu_i,\mu_j)$
 - $m_{corr}(\mu\mu\mu)$, corrected for $p_{\perp}(\nu)$


- Imbalance between $p_T(\mu_W)$ and $p_T(J/\psi)$

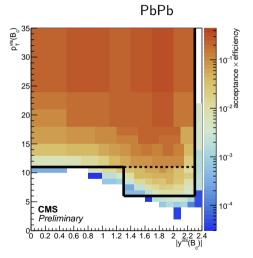
Who is the J/ψ ?


- ullet In a trimuon of charge ± 1 , there are 2 opposite-sign (OS) dimuons
- Problematic if the 2 pairs are in the dimuon mass peak (SR) or sidebands (SB) region
- ullet Dimuon mass criterium would bias fake J/ψ background

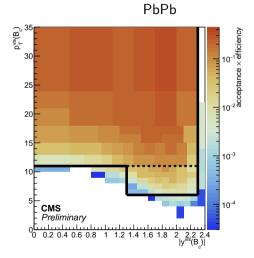
Who is the J/ψ ?


- ullet In a trimuon of charge ± 1 , there are 2 opposite-sign (OS) dimuons
- Problematic if the 2 pairs are in the dimuon mass peak (SR) or sidebands (SB) region
- ullet Dimuon mass criterium would bias fake J/ψ background

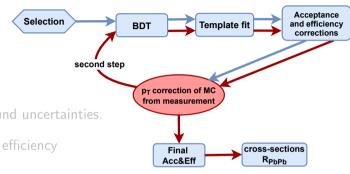
 \longrightarrow Keep both pairs as trimuon candidates, with weights of sum 1, corresponding to probability of being a J/ψ


Who is the J/ψ ?

- ullet In a trimuon of charge ± 1 , there are 2 opposite-sign (OS) dimuons
- Problematic if the 2 pairs are in the dimuon mass peak (SR) or sidebands (SB) region
- Dimuon mass criterium would bias fake J/ψ background
- \longrightarrow Keep both pairs as trimuon candidates, with weights of sum 1, corresponding to probability of being a J/ψ
 - Weights extracted from unambiguous trimuons in selected data
 - Applied to trimuons having 2 OS pairs in SR or SB


Analysis bins (from acceptance and efficiency)

 Acceptance and efficiency from (p_T-corrected) signal MC + tag-and-probe single-muon corrections



Analysis bins (from acceptance and efficiency)

- Acceptance and efficiency from (p_T-corrected) signal MC + tag-and-probe single-muon corrections
- Adapt binning to CMS shape (and need low p_T)
 - \rightarrow Choose two p_T bins with rapidity cuts:
 - $6 < p_T < 11 \text{ GeV with } 1.3 < |y| < 2.3$
 - $11 < p_T < 35$ GeV with 0 < |y| < 2.3
- Also two centrality bins 0-20% and 20-90%, integrated over $(p_T, |y|)$ bins

- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.
- Run second step of analysis with corrected MC
 → final acceptance and efficiency
- Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins, with some rapidity cuts

Categorisation of backgrounds

• Is the chosen dimuon a true J/ψ ?

NO \rightarrow (1) Use dimuon mass sidebands (data-driven fake J/ψ)

Categorisation of backgrounds

• Is the chosen dimuon a true J/ψ ?

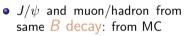
```
NO \rightarrow (1) Use dimuon mass sidebands (data-driven fake J/\psi) YES \downarrow
```

• Do the J/ψ and μ come from the same (displaced) decay vertex?

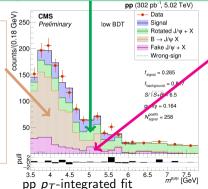
```
NO \longrightarrow (2) Data-driven rotated J/\psi sample (rotate the momentum and flight distance of all J/\psi's in data)
```

Categorisation of backgrounds

• Is the chosen dimuon a true J/ψ ?

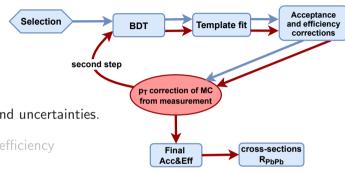

```
NO \rightarrow (1) Use dimuon mass sidebands (data-driven fake J/\psi)
YES .
```

- Do the J/ψ and μ come from the same (displaced) decay vertex?
 - **NO** \rightarrow (2) Data-driven rotated J/ψ sample (rotate the momentum and flight distance of all J/ψ 's in data) YES .
- Third muon is mostly a misidentified hadron
 - (3) Non-prompt J/ψ MC describes this $B \to J/\psi h^{\pm} X$ correctly


Background properties

- $J/\psi \mu$ from \neq vertices \longrightarrow use rotated J/ψ sample
- \bullet Rotate (around primary vertex) the flight direction and momentum of data J/ψ
- Data-derived normalisation in PbPb

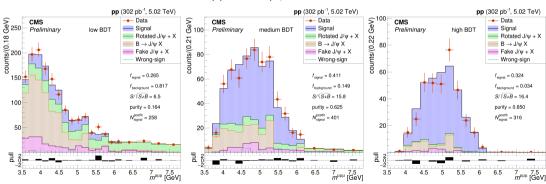
• Leftover $J/\psi - \mu$ correlations in pp \longrightarrow vary rotation angles



- Free normalisation in fit (misID rate)
- Cutoff at 5.3 GeV
- Very small in PbPb

- Fake J/ψ
 - dimuon mass sidebands
 - Data-derived normalisation
- ullet Allow variation between lower $(m_{\mu\mu} < m_{J/\psi})$ and upper sideband $(m_{\mu\mu} > m_{J/\psi})$

- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.
- Correct yields for acceptance and efficiency
 → p_T spectrum correction of MC
- Run second step of analysis with corrected MC
 → final acceptance and efficiency
- Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins, with some rapidity cuts


Template fit (pp)

- Likelihood fit over 3 BDT bins $+ 2 p_T$ or centrality bins
- Nuisance parameters to account for background uncertainties:
 vary shapes and some normalisations + template stat. uncertainties

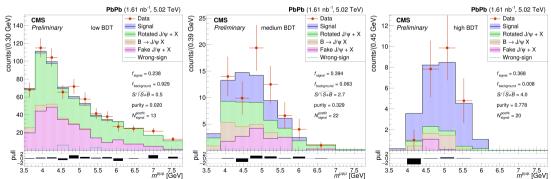
Template fit (pp)

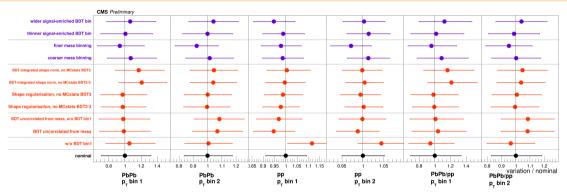
- Likelihood fit over 3 BDT bins $+ 2 p_T$ or centrality bins
- Nuisance parameters to account for background uncertainties:
 vary shapes and some normalisations + template stat. uncertainties

pp,
$$11 < p_T < 35 \text{ GeV}$$

Template fit (PbPb)

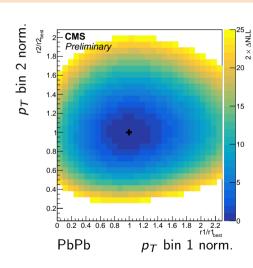
- Likelihood fit over 3 BDT bins $+ 2 p_T$ or centrality bins
- Nuisance parameters to account for background uncertainties:
 vary shapes and some normalisations + template stat. uncertainties

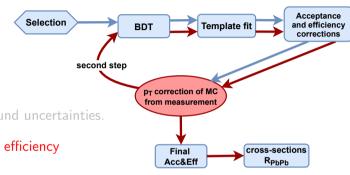

PbPb, $11 < p_T < 35$ GeV


Template fit (PbPb, centrality)

- Likelihood fit over 3 BDT bins $+ 2 p_T$ or centrality bins
- Nuisance parameters to account for background uncertainties: vary shapes and some normalisations + template stat. uncertainties

centrality 20 - 90% (p_T -integrated)

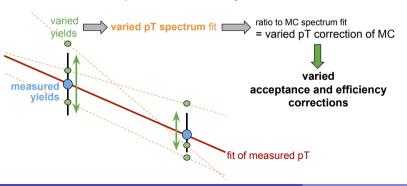

Fit method variations


- 11 variations of fit method: decorrelate BDT from mass, change mass or BDT binning, change treatment of stat. uncertainties on templates, ...
- Systematic uncertainty = RMS of the 3 orange categories of methods
- Violet: only checks (consistent with nominal)

Significance of observation in PbPb

- Coloured blob is 5σ significance, from the PbPb p_T -dependent-fit likelihood
- Include the fit method systematics
 - \rightarrow Significance of observation of B_c in PbPb collisions is well above 5σ
- Other uncertainties are multiplicative:
 - Acceptance and efficiency
 - Tag-and-probe
 - Luminosity

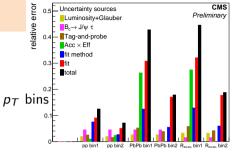
- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.
 Nuisance parameters for background uncertainties.
- Correct yields for acceptance and efficiency
 - → spectrum correction of MC
- Run second step of analysis with corrected MC
 - → final acceptance and efficiency
- Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins, with some rapidity cuts

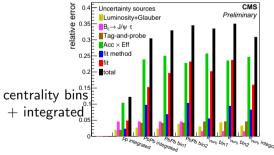


Acceptance and efficiency: iterative procedure

- Wide bins $\rightarrow \alpha \times \varepsilon$ is very sensitive to the assumed p_T spectrum shape
- Need to correct with our measurement the p_T spectrum of MC, before recalculating $\alpha \times \varepsilon$
 - → Re-run the whole analysis with corrected MC
 - → Correct MC again
 - final acceptance and efficiency

Acceptance and efficiency: iterative procedure

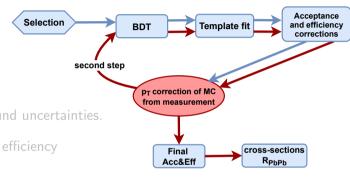

- Wide bins $\longrightarrow \alpha \times \varepsilon$ is very sensitive to the assumed p_T spectrum shape
- Need to correct with our measurement the p_T spectrum of MC, before recalculating $\alpha \times \varepsilon$
 - → Re-run the whole analysis with corrected MC
 - → Correct MC again
 - final acceptance and efficiency

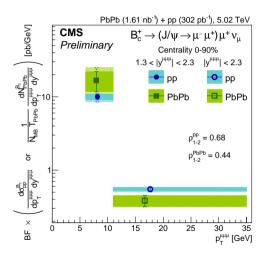


- For p_T -integrated bins: uncertainty = RMS of varied $\alpha \times \varepsilon$ (\longrightarrow dominant)
- For p_T bins: correlations between $\alpha \times \varepsilon$ and other uncertainties
 - Full uncertainty = RMS of varied observed yield \times varied $\alpha \times \varepsilon$ correction

Summary of uncertainties

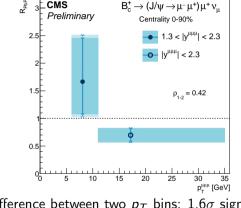
- Fit uncertainty (statistical+systematic) (dominates in p_T bins)
- Fit method variation
- Acceptance and efficiency (dominates p_T-integrated bins)
- Tag-and-probe (scale factors on efficiency)
- Luminosity + Glauber model
- Contamination from other B_c decays: $B_c \to J/\psi (\tau \to \mu X) \nu_{\tau}$ $B_c \to (c\bar{c} \to J/\psi X) \mu \nu_{\mu}$ \to estimated $\lesssim 4.5\%$ and partially cancels in R_{PhPh}



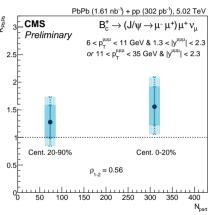

Analysis strategy

- Selection + BDT
- Trimuon mass templates for background and signal
- Template fit of trimuon mass.

 Nuisance parameters for background uncertainties.
- Correct yields for acceptance and efficiency
 → spectrum correction of MC
- Run second step of analysis with corrected MC
 → final acceptance and efficiency
- Result: $R_{PbPb}(B_c)$ in two p_T or centrality bins, with some rapidity cuts

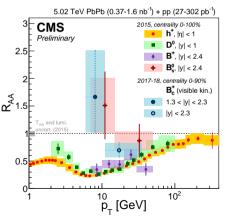


Cross sections

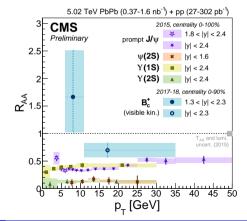


- Scale corrected yields by luminosity (pp) and $N_{\rm MB}$ $T_{\rm PbPb}$ (PbPb)
- Correlation between bins fully calculated
- pp cross section integrated on p_T used for centrality bins

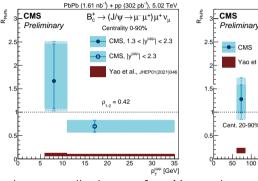
First $R_{PbPb}(B_c)!$

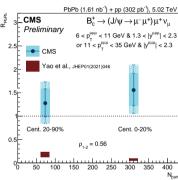

PbPb (1.61 nb⁻¹) + pp (302 pb⁻¹), 5.02 TeV

- Difference between two p_T bins: 1.6σ significance \longrightarrow Points at softening of p_T spectrum in PbPb collisions
- Uncertainties: bin-to-bin fully-uncorrelated VS total


Comparison with open and hidden heavy flavour at CMS

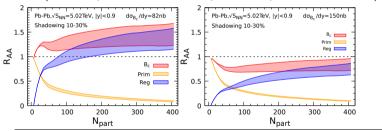
 B_c and B_s modifications are similar, and less suppression than light hadrons + B and D



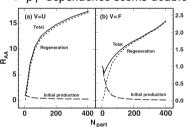

B_c much less suppressed than heavy quarkonia

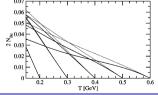
→ different mechanisms at play than hidden heavy flavour?

Comparison with one theory prediction

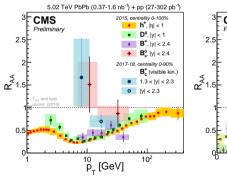


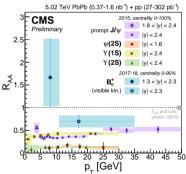
- Received one theory contribution yet, from Yao et al:
 - Transport model including correlated and uncorrelated recombination.
 - B_c (not trimuon) kinematics are used + no feed-down included
- Lower values than measurement. But no recombination of excited B_c states is included...
 - \rightarrow importance of recombination in B_c production (including cross-talk with excited states) ?


Other (phase-space-integrated) predictions


- TAMU transport model (B. Wu, Z. Tang and R. Rapp, in prep., based on PRC96(2017)054901 & Nucl. Phys. A 859 (2011) 114)
- CAVEAT: inclusive (p_T -integrated) (whereas $p_T > 6$ GeV \longrightarrow expected drop of recombination)

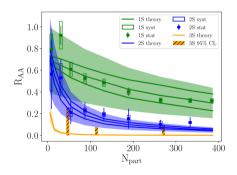
Schroedter, Thews, Rafelski:
 ×500 enhancement in
 PRC 62 (2000), 024905
 (without suppression effects)

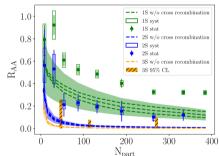

- Liu Greiner Kostyuk (PRC 87 (2013), 014910)
- \bullet p_T dependence seems doable



Conclusion

- First observation of the B_c meson in PbPb collisions (well-above 5σ significance)
- Only one theory prediction yet, showing (much) more suppression than our result
- Results may point towards importance of recombination mechanism in B_c production + can help disentangle enhancement and suppression mechanisms in the QGP!





Yao et al. prediction, based on JHEP01(2021)046

- Recombination of excited states ('cross-talk' recombination) not included in present prediction
- Changes $R_{PbPb}(\Upsilon(nS))$ by a factor of $\sim 2...$ But a factor of 5-10?

(a) With cross-talk recombination.

(b) Without cross-talk recombination.

Explicit cuts

• Fiducial B_c XS cuts:

$$0 < |y| < 1.3 \& 11 < p_T < 35 \text{ GeV}$$
 OR $1.3 < |y| < 2.3 \& 6 < p_T < 35 \text{ GeV}$

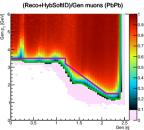
Loose HybridSoftID muon acceptance cut:

$$(p_T \geqslant 3.4) || (|\eta| \geqslant 0.3 \& |\eta| < 1.1 \& p_T \geqslant 3.3) \\ || (|\eta| \geqslant 1.1 \& |\eta| < 1.4 \& p_T \geqslant 7.7 - 4.0 * |\eta|) \\ || (|\eta| \geqslant 1.4 \& |\eta| < 1.55 \& p_T \geqslant 2.1) \\ || (|\eta| \geqslant 1.55 \& |\eta| < 2.2 \& p_T \geqslant 4.25 - 1.39 * |\eta|) \\ || (|\eta| \geqslant 2.2 \& |\eta| < 2.4 \& p_T \geqslant 1.2)$$

Tight HybridSoftID+Trigger muon acceptance cut:

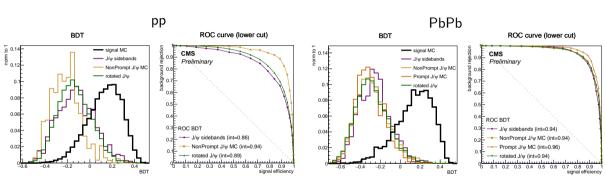
$$\begin{array}{l} |\eta| < 2.4 \,\& \\ ((|\eta| < 1.2 \,\&\, p_T \geqslant 3.5) \\ ||(1.2 \leqslant |\eta| \,\&\, |\eta| < 2.1 \,\&\, p_T \geqslant 5.47 - 1.89 * |\eta|) \\ ||(2.1 \leqslant |\eta| \,\&\, p_T \geqslant 1.5)) \end{array}$$

Single-muon acceptance + selection

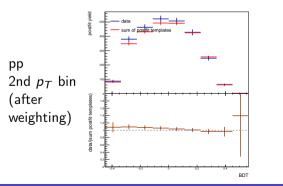

 Two muons must pass the J/ψ trigger, the third one only Hybrid-soft

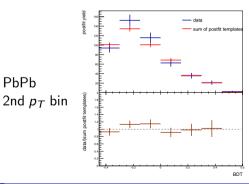
> Hybrid-soft + trigger (Reco+HybSoftID+Trigger)/Gen muons (PbPb)

PbPb single-muon efficiencies:


- Hybrid-soft is:
 - Passes global and tracker muon ID
 - $d_{xy} < 0.3$ cm and $d_z < 20$ cm
 - tracker layers with measurement > 5
 - pixel layers with measurement > 0

Hybrid-soft selection

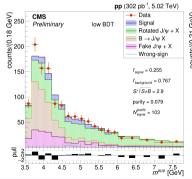

- Single-muon acceptance cuts from **efficiency** \geq 10%
- Looser acceptance cuts for the non-triggering muon

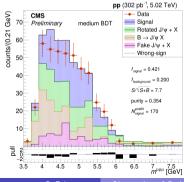

BDT variable

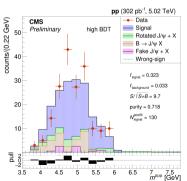
Check of BDT distributions

- After the second-step fit, we compare the BDT distribution in data
 VS the one of the sum of postfit templates
- Agreement within uncertainties in PbPb.
 In pp, use the ratio as weights applied to all templates before a final re-fit.

Nuisance parameters

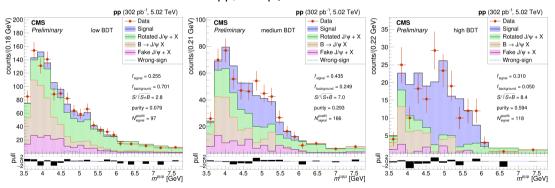

Profiling over nuisance parameters → systematic uncertainties reflected on signal normalisation fit uncertainty


- Fake J/ψ (1): morph shape to lower or upper sideband only $(\pm 2\sigma)$
- flipped J/ψ (2b):
 - pp: quasi-free normalisation, and 2 shape morphing parameters:
 - changing rotation angles
 - adding non-prompt or full combinatorial J/ψ MC (2a)
 - PbPb: self-normalised (fixed) + change shape to combinatorial J/ψ MC (2a)
- B decays (3): quasi-free normalisation
 + morph shape to include non-prompt combinatorial MC (pp only)
- One parameter per trimuon mass bin, to vary the templates within their statistical uncertainties

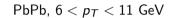

Template fit result (pp)

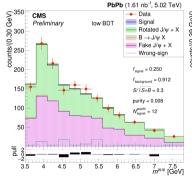
- r_1, r_2 close to 1 (pre-fit normalisation from previous measurements)
- signal normalisation uncertainty 5% (p_T bin 2) or 9% (p_T bin 1)
- Second-step fit is shown

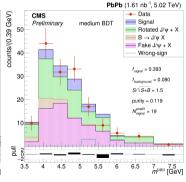
pp, $6 < p_T < 11 \text{ GeV}$

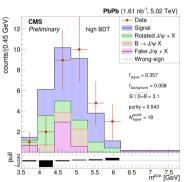


Template fit result (pp) (BDT-mass decorrelated)

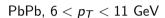

As a fit method variation, decorrelate BDT from the trimuon mass

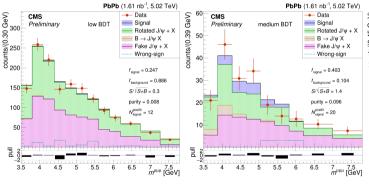

pp.
$$6 < p_T < 11 \text{ GeV}$$

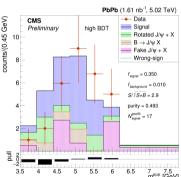



Template fit result (PbPb)

- Signal normalisation uncertainty 17% (p_T bin 2) or 31% (p_T bin 1)
- Second-step fit is shown

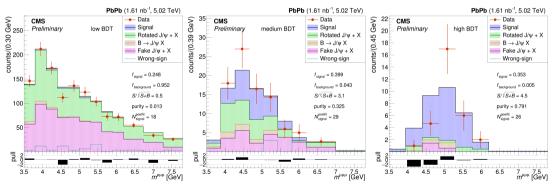






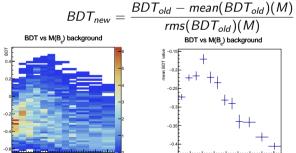
Template fit result (PbPb) (BDT-mass decorrelated)

As a fit method variation, decorrelate BDT from the trimuon mass

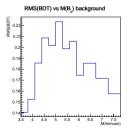


Template fit result (PbPb, centrality)

• Signal normalisation uncertainty 20% (centrality bin 1) or 23% (centrality bin 2) PbPb, centrality 0-20% (p_T -integrated)

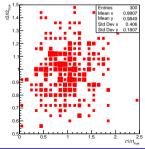

Variations of fit method

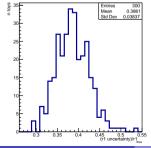
11 variations of the fit method are run:

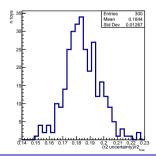

- Ignore BDT bin 1 in the fit (i.e. less constrained backgrounds)
- Fit with BDT decorrelated from mass (to leave discriminant power to the mass, see procedure in backup), with *or* without BDT bin 1
- Regularise the low-stats background shapes (3-bin floating average).
 In this case, need to ignore the nuisance parameters for bin-by-bin stat uncertainties, in BDT bin 3 or in BDT bin 2&3
- Normalise the shape variations to the nominal shape in each BDT bin (nominal: normalisation is integrated on BDT bins).
 In this case, need the low-stats regularisation as well (without bin-by-bin stat uncertainties, 2 cases)
- Change mass binning (finer *or* coarser), *or* BDT binning ([20, 35, 45]% or [30, 45, 25]% of signal in the 3 BDT bins)

Uncorrelate BDT from trimuon mass

- The BDT, when optimising, realises that most signal is in [4.5,5.5] GeV...
 - → steals discriminative power from the template fit procedure
- Decorrelate BDT value from mass (in each p_T or centrality bin), and use alternative fit in the systematics
- Subtract the mean BDT mass (of total background) in each mass bin, and divide by the RMS of the BDT in each mass bin:




Example of PbPb 2nd p_T bin:



Toys for fit bias and uncertainty stability

- Run 300 toy PbPb datasets from the post-fit signal+background model
- Crosscheck the fit uncertainties (and $r_1 r_2$ correlation) \longrightarrow variability of about 10% of the uncertainty
- Negligible bias in the mean of POIs from toys
- Same check done in pp too

Two-steps strategy

- First step:
 - ullet Calculate p_T -dependent corrected yields with one-binned strategy and original MC
 - Fit p_T spectrum \longrightarrow Correct p_T in signal MC
- Second step:
 - Re-run the analysis (new BDT training, check of BDT distribution, template fit, fit method systematics, $\alpha \times \varepsilon$ corrections)
 - Again: Fit p_T spectrum + correct signal MC
- Third step:
 - Nominal acceptance and efficiency correction from 2nd-step-corrected MC
 - Acceptance and efficiency uncertainty:
 - Vary second-step p_T -binned measurement within the uncertainties excluding $\alpha \times \varepsilon$ and global unc. (luminosity and $B_c \to J/\psi \tau$)
 - \rightarrow varied p_T spectrum of signal MC
 - \rightarrow varied $\alpha \times \varepsilon$ corrections