QoS: CNAF experience

Vladimir Sapunenko Head of Storage and Data management group

Outline

- Redundancy
 - Experience with RAID and its sustainability
- Media
 - Incorporation of novel media types
 - Consumer vs enterprise drives
 - SMR disks
 - Fast cache
- Purchasing strategy
 - Server densification, reducing overheads
- Stack consolidation
 - Cost management through converging multiple user communities on the same system
- use of post-warranty hardware

Redundancy on the storage level

- Everything is under HW RAID protection
- Older systems are protected by traditional RAID6 (8+2)
 - Reconstruction for a 8TB NL-SAS hdd under normal load takes ~50 Hours
- More recent systems are protected by Distributed RAID (similar to EC)
 - Bigger Storage Pools (70-180 HDDs)
 - Single stripe similar to RAID6 (8+2) cycling over entire Storage Pool
 - Reserved Capacity (like Hot Swap disks) equal to the capacity of 2 or 3 disks
 - Reconstruction (recovery of missing blocks) starts automatically using Reserved Capacity
 - Since many disks participating in this reconstruction the whole process is much faster (~4-6 hours for 8 TB disks) and produces lower load on participating nodes
- Overall efficiency of disk space usage **75%** (Usable/Raw)

Media

- Capacity drives Enterprise class NL-SAS drives
 - Capacity 4 8 TB (14TB hdds are being installed)
 - Sector size 512B or 4KB
 - 4KB sectors are more performant from throughput point of view
- Fast drives (SAS and SSD)
 - Used for metadata or for some special FS (like DB or users home ~3.5TB)
 - Mid range SSD with >3 rewrites per day (DWPD)
- No SMR drive in use nor expected to be used
 - Needs specific driver and support on application level
 - Still expensive to be considered as tape replacement
- HDD Failure rate 1 hdd/week (over +4400 disks deployed)

Fast cache (NVMe)

With the price drop NVMe may become interesting for use as

- Local cache on clients (on every WN)
 - Volatile OK
 - Can be used as local SCRATCH or as local CACHE for GPFS
- Storage for tape buffer
 - Persistent (RAID-protected) is better
 - Tape dives becomes faster and faster (easely archivable 400MB/s per drive)
 - One server can provide optimal (full) performance for up to 10 drives
 - 100GbE and/or IB for tapeserver->diskserver
 - 2xFC16 to/from tape
- Dedicated storage for metadata
 - Only persistent (protected by RAID)

Purchasing strategy

- Bigger integrated storage systems
 - Easy to manage
 - Faster in recovery
- Small number of servers
 - single server can manage different services providing up to 10 GB/s I/O rate
- 2x100 GbE for server to LAN connectivity
 - Redundancy on the LAN level
- FDR or EDR on IB for the server to disks connectivity
- 800-3000 TB /server (in prod now)
 - Guaranteed at least 3MB/s/TB in data access
- SW costs (licenses) is at ~3% to overall HW price

Storage HW overview (disk)

Manuf	Model	N. units	N. Of cont/unit	N. Encl./unit	RAID configuratio	SSD, N*Capacity (GB)	SAS, N*Capacity (GB)	NL-SAS, N*Capacity (TB)	Year in service
DELL	MD3860f	4	2	3	DDP 180(8+2)	0	0	180 * 4	2014
DDN	SFA12K	2	2	10	6(8+2)	0	36 * 300	800 * 8 [*]	2015
Huawei	OceanStor 6800v5	1	6	12	2.0 95(6+2)	25 * 600	0	855 * 6	2017
DELL	MD20f	2	2	1	1(1+1)	24 * 300	0	0	2015
Huawei	OceanStor 18000v5	5	4	34	2.0 67(8+2)	12 * 1800	0	408*6000	2018
DDN	SFA 7990	2	2	3	DCR 56(8+2)	0	0	232x14	2020
DDN	SFA 220NV	2	2	1	DCR 7(4+2)	7 * 3200**	0	0	2020

Disk space efficiency usage (usable/raw) – 75%

[•] - 4KN sectors

"** NVMe disks

LHCb example

Servers (dedicated):

- 4 as GridFTP, XrootD and NSD
- 2 as metadata servers
- 1 (VM) as StoRM FE/BE
- 1 às HSM

Storage (shared with other exps)

• 2 Dell MD3820f as metadata storage

20 GB

15 GB

10 GB

5 GB

0 B

B/S

- 3 Huawei OS18Kv5 (main storage)
- 1 SL8500 Tape library

So, only 4 I/O servers and

4 service nodes for 6PB of data!

MSS @CNAF

- 1 TSM commont server for all experiments
- 1 HSM server (tape server) for each LHC experiment
 - 2xFC16 to tape drives
 - 2xFDR IB or 2x10GbE to disks
- 2 tape libraries
 - o only one actively used, the second one just entered in service
- 16 T10kD + 19 ts1160 tape drives

ATLAS example during tape carousel last week:

- Up to 8 tape drives (when available)
- Up to **84 TB/day** recall rate NB: doing so with just 1 tape server

Stack consolidation

- One filesystem for more user groups
- Fileset in GPFS
- Use of fileset quotas makes possible to overbook filesystem
- "df" on user dir will show quota as available disk space
- Example
 - 4PB filesystem for 44 experiments
 - Sum of all quotas = 7.5PB
 - Space usage 85%

Use of post-warranty HW

Something that we are doing regularly, but

- It costs a lot in sense of power ether electrical and human
 - No HW can be run unattended, To keep it running support is needed
 - Disks are failing
 - "disks exist in two states: failed or about to fail" (© A.Maslennikov)
 - Always additional costs:
 - Using local man-power
 - Manageable until it is ease accessible no way to keep it on remote site
 - Using lower level of external support
- Not sure if it makes sense in production environment

