

Gordon Godfrey astroparticle physics Dec 2, 2020

## Primordial Black Holes and Gravitational Waves

Misao Sasaki

Kavli IPMU, University of Tokyo YITP, Kyoto University LeCosPA, National Taiwan University





# inflationary model construction

## cosmic spacetime diagram





## Curvature perturbation to PBH

> gradient expansion/separate universe approach

 $6H^{2}(t,x) + R^{(3)}(t,x) = 16\pi G\rho(t,x) + \cdots$  Hamiltonian constraint (Friedmann eq.)



#### Model 1: Scalaron+χ model Pi, Zhang, Huang & MS '17



- Field  $\chi$  plays the role of inflaton at the 2nd stage.



non-Gaussianity is found to be small in this model



#### Model 2: Resonant Amplification Model

Z. Zhou, J. Jiang, Y. Cai, MS & S. Pi, 2020



## Curvature perturbation spectrum and PBH mass function: an example



#### **GWs Generated during Inflation**



#### Model 3: PBH-as-MVP scenario

PBH formation during inflation due to vacuum tunneling (not from curvature perturbation)

Garriga, Vilenkin & Zhang '15, Deng & Vilenkin '17,...

example:



#### Mass function in PBH-as-VIP scenario

Kusenko, MS, Sugiyama, Takada, Takhistov & Vitagliano '20



## GWs from Large Curvature Perturbation



## Gaussian Case



#### Non-Gaussian Case

$$\begin{aligned} \mathscr{R}(\mathbf{x}) &= \mathscr{R}_g(\mathbf{x}) + \\ &+ \mathbf{F}_{\mathrm{NL}} \left[ \mathscr{R}_g^2(\mathbf{x}) - \langle \mathscr{R}_g^2(\mathbf{x}) \rangle \right]. \end{aligned}$$

- Up:  $F_{NL} > 0$ , and we fix the PBH abundance to be 1.
- Down:  $F_{NL} < 0\,$  , and we fix the peak amplitude to be  $\mathscr{A}_{\mathscr{R}} = 10^{-2}$
- Frequency: PBH window <-> LISA band
- GWs will be detected if BHs=CDM
- Conversely, if LISA doesn't see GWs, PBHs≠CDM



## GWs from Binary PBHs

## LIGO-Virgo (LV) BBHs

- LIGO discovered GWs from Binary BHs !
- Mass was large:  $M_{\rm PBH} \sim 30 M_{\odot}$
- ~ 50 BBH mergers up to now!
  LIGO-Virgo O1+O2+O3a





consistent with spin=0
 PBHs with f<sub>PBH</sub>~10<sup>-2</sup>-10<sup>-3</sup>
 MS, Suyama, Tanaka & Yokoyama, '16

#### Testing LV BH=PBH scenario



## Testing LV BH=PBH scenario (cont.)



 $\alpha \sim 1.4$  for BBH from close encounters

"Pre-DECIGO can get the smoking gun ..."

Nakamura et al. '15



## Testing LV BH=PBH scenario (cont. 2)



Gaussian case seems on the verge of exclusion/or detection! lots of speculations after recent NANOGrav 12.5 years result... NANOGrav collaboration '20

## Summary

- 2-field inflation models can produce abundant PBHs as well as GWs.
- If PBHs = CDM, M<sub>PBH</sub>~10<sup>19-22</sup>g, induced GWs must be detectable by LISA, indep of non-Gaussianity.
- Conversely if LISA doesn't detect the induced GWs, it constrains the PBH abundances of M<sub>PBH</sub>~10<sup>19-22</sup>g, where no other experiment can explore.
- If resonant amplification occurs, GWs generated during inflation can dominate GW background: PBHs and GWs give complimentary info of the 2-fields.
- LV BHs = PBHs scenario with M<sub>PBH</sub> >~20 M\_solar, is on the verge of exclusion/ detection by HSC & PTA.
- PBHs from vacuum tunneling during inflation may explain everything!