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Curvature perturbation to PBH

 

➢If                                                        , it collapses to form BH 
 

➢Spins of PBHs are expected to be very small

Hamiltonian constraint 
(Friedmann eq.)

( )3 2 1  ( ) ~~ cR H δρ ρ⇔ /
Young, Byrnes & MS ‘14

3 2( ) ~R H3 0( )R !

2 36 16( )( , ) ( , ) ( , )H t x R t x G t xπ ρ+ = + ⋅ ⋅ ⋅

➢ gradient expansion/separate universe approach

R(3) ≈ −
4
a2

∇2ℛc ≈
8πG

3
δρc

δρc

ρ
≈ ℛc

k2

a2
= H2at

formation of 
a closed universe

de Luca et al.  2019, Harada et al. 2020, …



fast-roll/overshooting
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• Scalaron φ becomes massive at the end of the 1st stage. 
• Field χ  plays the role of inflaton at the 2nd stage. 

χ

φ

Model 1: Scalaron+χ model
Pi, Zhang, Huang & MS ‘17

2-stage inflation
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sharp peak

scalaron + x model can produce a sharp peak in the 
curvature perturbation spectrum at small scale

δc = O(1)

μ2 =
M2

3H2

 non-Gaussianity is found to be small in this model
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scalaron+x model can realize

PBH=CDM scenario with a monochromatic PBH mass!

[g]

f(MPBH) ∝ exp [−
δ2

c

2P(k) ]
δc = O(1)

spike!
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Model 2: Resonant Amplification Model
Z. Zhou, J. Jiang, Y. Cai, MS & S. Pi, 2020

V(ϕ) ∼ Λ(ϕ)cos ( ϕ
fa ) with growing Λ(ϕ)

δϕ

δχ

without amplification

δϕ : amplified by oscillating potential

δχ : amplified through coupling to δφ

This leads to enhancement of 
curvature perturbation
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Curvature perturbation spectrum

and PBH mass function: an example
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FIG. 3. Induced Resonance of k⇤ mode with parameter choice:
g = �0.05, ⇠ = �0.1g, ↵ = 0.55, ⇤0 = 4 ⇥ 10�4

Mp,
fa = 5 ⇥ 10�3

Mp, V0 = 3 ⇥ 10�11
M

4

p and k⇤ = 1012Mpc�1.
The parameters are chosen to satisfy the observed perturba-
tion amplitude As ⇠ 10�9 as well as to realize the induced
resonance. The Hubble parameter during the resonance is
about H ' 3.1 ⇥ 10�6

Mp. The blue and red solid lines are
the numerical solutions of ��k⇤ and ��k⇤ , respectively. The
yellow and light blue dashed lines are their approximated so-
lutions from Eq. (19) and (18). The pink line depicts the
approximate analytical behavior given in Eq. (22). The green
line represents ��k for a mode k that does not get the induced
amplification. The vertical axis is the amplitude normalized
with respect to the perturbation amplitude at the time when
the k⇤ mode enters the resonant band.

we numerically solve Eqs. (12) and (17). The results for
a particular set of model parameters are shown in Fig. 3.
We see that ��k follows the usual dampened feature for
modes k that do not stay in the resonant band and be-
comes frozen after Hubble exit. As for the k⇤ mode, ��k⇤

is amplified exponentially, reaches a maximum, and de-
cays after � stops rolling at �e. On the other hand, ��k⇤

evolves as given by Eqs. (24) and (25), showing the in-
duced resonant amplification inside the Hubble horizon
and frozen after Hubble exit.

D. Curvature perturbation spectrum

Having solved the evolution of the field fluctuations up
to Hubble exist and given the background dynamics, we
can now compute the power spectrum of the primordial
comoving curvature perturbation PR(k) use the �N for-
malism [13, 23? –25]. The �N formalism states that the
final value of the conserved comoving curvature pertur-
bation Rc in the adiabatic limit on superhorizon scales
is given by

Rc(x) = N(x, t, tf )� N̄(t, tf ) = �N(x, t) (29)

where N is the number of e-folds from t to tf locally
determined from the homogeneous background evolution,
with tf being a cosmic time when the adiabatic limit is

achieved and t being any time before tf which is usually
taken to be the time of horizon exit of the scale of interest.
In our model we have

�N(x, ti) =
⇣@N
@�

��+
@N

@�
��+

1

2

@2N

@�2
��2 (30)

+
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t=ti

,

where �� and �� are the fluctuations evaluated on flat
slicing at t = ti. Since the initial �-dominated stage is
essentially the same as the standard single field inflation,
let us focus on the stage when and after � stops evolv-
ing. Then we may choose ti to be some time after the
horizon exit when �� has decayed out. This implies we
may ignore �� at t = ti and hence

�N(x, ti) =
⇣@N
@�

��+
1

2

@2N

@�2
��2

⌘

t=ti

. (31)

In order to evaluate the above, we need to know the num-
ber of e-folds N counted backward in time from the end
of inflation to the time t = ti. Then we find that the con-
tribution of � to N is small, of O((���2

e
)/M2

p
) at most,

because � becomes non-dynamical. Thus we obtain

N =
�2

2M2
p

+ �
V0 + g⇤3

0
�e

⇠M2
p
⇤3

0

+O
�
(�� �e)

2/M2

p

�
, (32)

where we set � = 0 to be the end of inflation for simplic-
ity.
Using the above result, the power spectrum for R is

found as

PR(k) =
k3

2⇡2

���
@N

@�

���
2

|��k|
2(ti) '

H2

8⇡2M2
p
✏��

A
2(k) ,

(33)
where an approximate expression for A2(k) is given by

A
2(k) = 1 +A

2(k⇤) exp
⇣
�

ln2(k/k⇤)

2�2

⌘
, (34)

where � = ln(k+/k�)/(2
p
2). A detailed derivation is

given in Appendix. B. For the parameters given in the
caption of Fig. 3, we find � = 0.245 and A

2(k⇤) = 106.3.
Since we have the standard almost scale-invariant spec-
trum PR = As(k/kp)ns�1 outside the resonant band,
where As is the amplitude of power spectrum and ns

is the spectral index at pivot scale kp ' 0.05Mpc�1 [? ],
We may parametrize the spectrum over the whole range
of k as PR = As(k/kp)ns�1

A
2(k) with A

2(k) given by
Eq. (34).
Finally, let us evaluate the non-Gaussianity of the

curvature perturbation. From Eq. (32), the local non-
Gaussianity is evaluated as

3

5
f local

NL
=

@��N

2(@�N)2
= ✏�� . (35)

Hence the local non-Gaussianity of the curvature per-
turbation turns out to be small. Nevertheless, since ��
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D. Curvature perturbation spectrum

Having solved the evolution of the field fluctuations up
to Hubble exist and given the background dynamics, we
can now compute the power spectrum of the primordial
comoving curvature perturbation PR(k) use the �N for-
malism [13, 23? –25]. The �N formalism states that the
final value of the conserved comoving curvature pertur-
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is given by
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where �� and �� are the fluctuations evaluated on flat
slicing at t = ti. Since the initial �-dominated stage is
essentially the same as the standard single field inflation,
let us focus on the stage when and after � stops evolv-
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In order to evaluate the above, we need to know the num-
ber of e-folds N counted backward in time from the end
of inflation to the time t = ti. Then we find that the con-
tribution of � to N is small, of O((���2

e
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N =
�2

2M2
p

+ �
V0 + g⇤3

0
�e

⇠M2
p
⇤3

0

+O
�
(�� �e)

2/M2

p

�
, (32)

where we set � = 0 to be the end of inflation for simplic-
ity.
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In order to evaluate the above, we need to know the num-
ber of e-folds N counted backward in time from the end
of inflation to the time t = ti. Then we find that the con-
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where we set � = 0 to be the end of inflation for simplic-
ity.
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where � = ln(k+/k�)/(2
p
2). A detailed derivation is

given in Appendix. B. For the parameters given in the
caption of Fig. 3, we find � = 0.245 and A

2(k⇤) = 106.3.
Since we have the standard almost scale-invariant spec-
trum PR = As(k/kp)ns�1 outside the resonant band,
where As is the amplitude of power spectrum and ns

is the spectral index at pivot scale kp ' 0.05Mpc�1 [? ],
We may parametrize the spectrum over the whole range
of k as PR = As(k/kp)ns�1

A
2(k) with A
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curvature perturbation. From Eq. (32), the local non-
Gaussianity is evaluated as

3

5
f local

NL
=

@��N

2(@�N)2
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Hence the local non-Gaussianity of the curvature per-
turbation turns out to be small. Nevertheless, since ��

PBH mass function

amplification factor

 for typical values 
of model parameters

Δ = O(1)

very good fit with log-normal function
∼ 106

PBHs can account for CDM
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GWs Generated during Inflation

δϕ

δχ

δϕ : amplified by oscillating potential

δχ : amplified through coupling to δφ

This leads to enhancement of 
curvature perturbation

This leads to GW generation 
during inflation

□ hij ∼ G∂iδϕ∂jδϕ

LISA sensitivity
GW probes δϕ

PBH probes δχ
11
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Model 3: PBH-as-MVP scenario
PBH formation during inflation due to vacuum tunneling


(not from curvature perturbation)
Garriga, Vilenkin & Zhang ’15, Deng & Vilenkin ’17,…

2

FIG. 1. Illustration of tilted “Mexican hat” potential V („, ‡)
describing a slowly rolling field tunneling to a minimum at
the origin at an approximately constant rate.

flation using a 2-field potential of the type

V („, ‡) = m
2(„2 + ‡

2) ≠ a(„2 + ‡
2)2 (1)

+ c

M
2

pl

(„2 + ‡
2)3 + gM

4

pl
sin

1
„

fMpl

2
,

where (gM
4

pl
) π m

2
< (c/M

2

pl
) < a. The potential, de-

picted in Fig. 1, resembles a “Mexican hat” with a dent
at the origin and a small tilt due to the shift-symmetric
term sin(„/fMpl), which breaks the rotational symmetry
in the ‡ ≠ „ plane. Periodic contributions can naturally
arise in inflationary models with axions, such as in axion
monodromy inflation (see e.g. [53] for review). The tilt
causes the scalar field to roll slowly along the rim of the
“hat” and source inflation until it stops at the minimum.
Since the dent in the middle of the “hat” sits at a deeper
minimum for a sizable portion of the path than the slow-
rolling field separated by a barrier, the field can tunnel
to this vacuum1. For a su�ciently small tilt, the bubble
nucleation rate ⁄ ≥ e

≠SE that depends on the Euclid-
ian instanton bounce action for the vacuum tunneling
SE is approximately constant and for specific model pa-
rameters can be computed from the bounce action using
standard techniques [55]. The tunnelling rate becomes
increasingly suppressed and e�ectively shuts o� as the
field rolls towards the portion of the tilted rim whose
height is deeper than the minimum of the dent at the
origin. Below, we take Mpl = 1.

The resulting bubbles with the energy density flb =
V (0, 0) in their interior have a radius smaller than the
inflationary Hubble length H

≠1

i = (8fifli/3)≠1/2 at the

1
In de Sitter space, tunneling to a higher energy vacuum is also

allowed, but the rate is suppressed [54].

time of formation. The pressure P = fli ≠ flb on the wall
causes the bubble to expand until P changes sign because
fli decreases below flb. They undergo rapid expansion un-
til the energy density inside the bubble exceeds the en-
ergy density in the exterior, which happens at some point
before the end of inflation at time ti. After that, the bub-
ble contracts and collapses to a black hole. Interactions
with the surrounding medium can also a�ect the bubble
wall momentum during the last stages of expansion.

While for the outside observer residing in the parent
Friedmann-Robertson-Walker parent Universe the result
of a bubble evolution is a black hole, the dynamics of
the bubble interior depend on whether the bubble radius
R exceeds H

≠1

b = (8fiflb/3)≠1/2 during expansion [56].
If R < H

≠1

b at all times, the bubble is sub-critical, and
it will eventually collapse under the e�ects of vacuum
pressure, wall tension and radiation pressure. At the end
of inflation, when the Hubble radius is ti ≥ H

≠1

i , the
bubble radius is Ri. Prior to thermalization, the energy
of the region excluded by the bubble contains inflaton
energy of Ei = (4fi/3)fliR

3

i . The mass of the resulting
black hole is approximately the energy of the bubble [48]:

M ƒ Eb ƒ
14fi

3 flb + 4fi‡Hi

2
R

3

i = ŸR
3

i , (2)

where ‡ is the bubble wall tension and the first and sec-
ond term represent the bubble energy density and wall
energy contributions, respectively. In the presence of
plasma from the inflaton decay, the energy di�erence
(Ei ≠ Eb) is transferred to the outgoing shock wave pow-
ered by the radiation reflected from the bubble wall.

If R > H
≠1

b during inflation, the bubble is super-
critical. In this case, the interior can support inflation
driven by flb within de Sitter horizon of size H

≠1

b . This
region is connected through a wormhole to the exterior
of the bubble [48, 57–59]. Eventually, the link is bro-
ken and a separate “baby universe” is formed, leading to
a multiverse structure [60] reminiscent of eternal infla-
tion [61]. The region a�ected by the bubble, as seen by
outside observer, cannot exceed the Hubble radius of the
parent Universe th = a(th)Ri, where a is the scale factor.
In radiation-dominated era a = (t/ti)1/2 and th = HiR

2

i .
Numerical simulations confirm that the resulting black
hole mass saturates this bound [48]

M ≥ 4fi

3 fl(th)H≠3(th) = HiR
2

i . (3)

The sub-critical relation, Eq. (2), does not apply when
Ri ∫ Hi/Ÿ or M ∫ Mú ≥ H

3

i /Ÿ
3.

At the end of inflation, the bubble sizes have a broad
distribution depending on the formation time2. The

2
Assuming bubbles nucleate with initial radius that is negligible

compared to H
≠1

i , the future bubble radius is approximately

independent of initial radii distribution and it will not a�ect

PBH mass-function [48].

inflaton

BH formation

inflaton

t

example:

inflaton

bubble formation

bubble stops expanding

slo
w-ro

llin
g

tunneling

can probe multiverse!
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Mass function in PBH-as-VIP scenario
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Kepler

EROS/MACHO

CMB

1

M31 95% excluded region(finite source size R = 10RØ)

tobs = 29hours

tobs = 2hours

f(M) = λ ( M
Mmin )

−1/2

: Mmin < M

• for scale M re-entering horizon 
during radiation-dom stage

f(M) = λ ( M1

Mmin )
−1/2

f(M) = λ ( M2

M1 )
1/2

( M
Mmin )

−1/2

: M1 < M < M2

• if there is an intermediate 
matter-dom stage

: M2 < M
may be tested by Subaru HSC

Kusenko, MS, Sugiyama, Takada, Takhistov & Vitagliano ‘20

Subaru accepted our proposal!

∝
M −1/2

Mmin M1 M2

CDMM ≃ Mmin ⋯

M ≃ M2 ⋯ LIGO BHs

M ≫ M2 ⋯ SMBHs4 night obs just done! 



GWs from 
Large Curvature Perturbation
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GWs can capture PBHs!
curvature 
perturvation

large
 pea

ks fo
rm P

BHs

NL effect induces GWs
spacetime oscillations

PBH

PBHs = CDM with MPBH ~1021g  
generates GWs with f~10-3 Hz

Background GWs 
at LISA band!

LIGO-Virgo(-KAGRA):10-1000 Hz

15

f ∼ 3Hz ( MPBH

1016g )
−1/2

f~10-9 Hz for MPBH ~1-10 M◯●
too high…~ Pulsar Timing Array band

cf.

□ hij ∼ G∂iℛ∂jℛ

ℛ(t, x)
(~Newton potential)
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Fig. 1. Top: The energy density of the induced GWs for the power spectrum for a peak width, ∆ =
0.0, 1.0 × 10−3, 1.0 × 10−1, 1.0. Bottom: Energy density of scalar-induced GWs associated with PBH
formation together with current pulsar constraint (thick solid line segment) and sensitivity of various
GW detectors (convex curves). Solid wedged lines indicate the energy density with the parameters
(ΩPBHh2, MPBH) = (10−5, 102M") (left), (10−1, 1020g) (right) for sufficiently small ∆ (thick lines) and
∆ = 1.0 (thin lines).
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Gaussian Case  

Saito & Yokoyama '09

(ΩPBHh2, MPBH) = (10−5,100M⊙)
(ΩPBHh2, MPBH) = (10−1,1020g)

16

MPBH ∼ 0.1M⊙ ( 1GeV
T )

2

∼ 10M⊙ ( 1pc−1

k )
2

LIGO-Virgo BHs? CDM?



• Up:             , and we fix the PBH 
abundance to be 1. 


• Down:              , and we fix the 
peak amplitude to be                  


• Frequency: PBH window <—> 
LISA band


• GWs will be detected if BHs=CDM


• Conversely, if LISA doesn’t see 
GWs, PBHs=CDM
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Non-Gaussian Case  
ℛ(x) = ℛg(x)+

+ [ℛ2
g(x) − ⟨ℛ2

g(x)⟩] .FNL
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GWs from Binary PBHs
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LIGO-Virgo (LV) BBHs
• LIGO discovered GWs from Binary BHs !

• Mass was large: 

• ~ 50 BBH mergers up to now!

MPBH ∼ 30M⊙

LIGO-Virgo O1+O2+O3a 

PBHs with fPBH~10-2-10-3

MS, Suyama, Tanaka & Yokoyama, ‘16

19

~ consistent with spin=0

GW150914



Testing LV BH=PBH scenario

1015 1020 1025 1030 1035

MPBH [g]

10°5

10°4

10°3

10°2

10°1

f=
≠
P
B
H
/≠

D
M

B
H

E
va
p
or
at
io
n

Kepler
CMBEROS/MACHO

10°15 10°10 10°5 100
MPBH [MØ]

HSC M31 constraint (95%CL)

LV BH=PBH

if Tobs >3 yrs by HSC

Proposed by Takada ‘18 

20



Testing LV BH=PBH scenario (cont.)
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Fig. 10 The event rates for Pop III (standard), Pop I and II (OLD), and PBBH merger as

a function of z. These rates are derived by differentiating the cumulative event rate in Fig. 5

with respect to ln z. Note here that the detectability may change by the mass distribution

of each model.

globular cluster (GC) M15. This suggests the possibility of the formation of BBHs in the

GC. A BH of mass ∼ 30M! is much larger than the typical mass of the constituent stars,

∼ 1M!, so that it will sink down to the center of the GC or star cluster due to dynamical

friction. Then BBHs can be formed in the central high density region of GCs. Since the

escape velocity from GCs is 10 km s−1 or so, the kick velocity in the formation process of

BHs or the kick when BBHs are formed by three-body interaction is high enough for BBHs

to escape from GCs. Rodriguez, Chatterjee, and Rasio [67] performed such a simulation to

show that the event rate is at most ∼ 1/7 of Pop I and II origin BBHs. If we take their result

as it is, the dynamical formation of binaries in GCs gives only a minor contribution of Pop

II origin of BBHs.

From only the chirp mass, total mass and spin angular momentum, it will be difficult to

distinguish the origin of GW150914-like BBHs. This is because the number of parameters

that can be determined by the distribution function of the GW data is much smaller than

that of the unknown model parameters and the distribution functions assumed in each model.

However, the redshift distribution of GW events varies robustly among the models. Namely,

the maximum possible redshift is ∼ 6, 10, and > 30 for Pop I/II, Pop III, and PBBH models,

respectively (see Fig. 10). In Fig. 10, we show the event rates for each model. These event

rates are derived by differentiating the cumulative event rate in Fig. 5 with respect to ln z.

To observe the maximum redshift as a smoking gun to identify the origin of GW150914-like

events, the construction of Pre-DECIGO seems to be the unique possibility.

Pre-DECIGO can observe NS–NS and NS–BH mergers. However no detection of GWs

from the merger of these systems has been done, though many simulations exist. For the

same distance of the source, the SNR for NS–NS and NS–BH (30M!) are 0.08 and 0.25

times smaller than for 30M!–30M! BBHs. We will here postpone discussing what we can

do using Pre-DECIGO about these sources until the first observations of GWs from these

15/17

Nakamura et al. ‘15
“Pre-DECIGO can get the smoking gun …”

0.97 ≲ α ≲ 1.05

BBH merger rate: ℛ

“Hidden Universality in …”
Kocsis et al. ‘17

α ≡ − (m1 + m2)2

×
∂2

∂m1∂m2
ℛ(m1, m2, t)

α ∼ 4 for BBH in dense stellar cluster

α ∼ 1.4 for BBH from close encounters

for PBHs
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where ⌦(0)(k), ⌦(2)(k), ⌦(4)(k) are the corresponding integral terms, and they are all of order
O(1) at the peak. Therefore, fixing the PBH abundance � that is determined by our fit, the

GW spectrum induced by the Gaussian part of the curvature perturbation is ⌦(0)

GW
⇠ A

2

0
,

while the extremely non-Gaussian part of GW spectrum is ⌦fNL!1
GW

⇠ O(A4
1). This gives

⌦FNL!1
GW

(k⇤)

⌦(0)

GW
(k⇤)

⇠ O
✓
A

2

0

R4
c

◆
⇠ O(10�4) (5.12)

with A0 = 0.0404 obtained from the best-fit parameter in section 4. Therefore, we can
see that the peak value of the GW spectrum is greatly suppressed, which makes it possible
to evade the constraint from EPTA. Accurate calculations for ⌦GW from (5.9) is done and
depicted in Fig. 7 for a fixed PBH abundance � = 3.4 ⇥ 10�12 obtained from Eq.(2.1), for
FNL = 0, 10, 100 and FNL ! 1. It is shown explicitly that all black holes observed by
LIGO can be PBHs, if the curvature perturbation is non-Gaussian with FNL & 10.

SKA

EPTA

PPTA

NANOGrav
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10-16

10-14

10-12

10-10

10-8

10-6

10-4

Figure 7. The GW spectrum with FNL = 0, 10, 100 and FNL ! 1 fit from LIGO detections
with respect to the sensitivities of current/future PTA projects. The current constraints (shaded)
are given by EPTA [95], PPTA [140], NANOGrav[141], and the future sensitivity curve of SKA is
depicted following [142].

Here we would like to mention that the future radio telescope project Square Kilometer
Array (SKA) [143] can extend the detecting accuracy to ⌦GW . 10�14 at around 4 nHz.
We depict the expected SKA sensitivity curve in Fig. 7. It is easy to see that whether the
LIGO/VIRGO detection events are mostly consists of PBHs can be easily checked by SKA.
We can also see that as the non-Gaussian peak has a higher frequency, we do not need
20 years to see that peak. 5 to 10 years of observation will be enough to see whether the
non-Gaussian peak in GW spectrum exists or not.

– 13 –

Cai, Pi, Wang & Yang ‘19“Pulsar Timing Array Constraints on …”

fpeak ∼ 6.7 × 10−9 ( MPBH

M⊙ )
−1/2

Hz

Testing LV BH=PBH scenario (cont. 2)

0.1 1 10 100

10-8

10-5

10-2

Figure 2. The exact and corresponding parametrized mass functions f(m) of PBHs are shown with
solid and dashed lines respectively. Top: AR = 0.05 , from right to left, k⇤ = 105.5, 106.0, 106.5Mpc�1,
respectively. Bottom: k⇤ = 106Mpc�1, from bottom to top, AR = 0.04, 0.05, 0.06, respectively.

Taking into account the torques caused by the surrounding PBHs and linear density
perturbations, the merger rate of PBH binary reads [114–116]

dR = S
1.6⇥ 106

Gpc3yr
f
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µ
� 34
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✓
M

M�

◆� 32

37

✓
t(z)

t0
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37

f̃(m1)f̃(m2)dm1dm2, (4.1)

where M ⌘ m1 +m2, µ ⌘ m1m2/M
2. We also define the normalized mass function of PBHs

f̃(m) ⌘ f(m)R1
0

dmf(m)
=

2

�(1 + 1

2� )m̂
1/�+2

m
1/�+1 exp

✓
�m

2

m̂2

◆
, (4.2)

and the suppression factor

S =

 
1 +

✓
⌦m

⌦CDM

�eq

fPBH

◆
2
!� 21

74

, (4.3)

where �eq ⇡ 0.005 is the variance of the density perturbations of the ambient fluid of the
universe at equality.

Assuming all the BBH mergers observed by LIGO/Virgo during first and second ob-
serving runs [117] are PBHs which originate from (3.1), and by following the method in [115],
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Figure 2. The exact and corresponding parametrized mass functions f(m) of PBHs are shown with
solid and dashed lines respectively. Top: AR = 0.05 , from right to left, k⇤ = 105.5, 106.0, 106.5Mpc�1,
respectively. Bottom: k⇤ = 106Mpc�1, from bottom to top, AR = 0.04, 0.05, 0.06, respectively.

Taking into account the torques caused by the surrounding PBHs and linear density
perturbations, the merger rate of PBH binary reads [114–116]
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where �eq ⇡ 0.005 is the variance of the density perturbations of the ambient fluid of the
universe at equality.

Assuming all the BBH mergers observed by LIGO/Virgo during first and second ob-
serving runs [117] are PBHs which originate from (3.1), and by following the method in [115],
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for f(m) peaked at m ∼ 17M⊙
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lots of speculations after recent NANOGrav 12.5 years result… 
Gaussian case seems on the verge of exclusion/or detection!

NANOGrav collaboration ‘20



Summary
• 2-field inflation models can produce abundant PBHs as well as GWs. 


• If PBHs = CDM, MPBH~1019-22g, induced GWs must be detectable by LISA, indep 
of non-Gaussianity.


• Conversely if LISA doesn’t detect the induced GWs, it constrains the PBH 
abundances of MPBH~1019-22g,  where no other experiment can explore.


• If resonant amplification occurs, GWs generated during inflation can dominate 
GW background: PBHs and GWs give complimentary info of the 2-fields.


• LV BHs = PBHs scenario with MPBH >~20 M_solar, is on the verge of exclusion/
detection by HSC & PTA.


• PBHs from vacuum tunneling during inflation may explain everything!
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