From Neutrino Masses to Baryogenesis

December 4th 2020 Gordon Godfrey Workshop

Julia Harz

From the Big Bang to Today...

Julia Harz

How big is the baryon asymmetry?

Our Universe consists mainly out of baryonic matter, quantified by the baryon-to-photon ratio:

$$\eta_B = \frac{n_B}{n_\gamma} = \frac{n_b - n_{\bar{b}}}{n_\gamma}$$

$$\eta_B^{\rm obs} = (6.09 \pm 0.06) \times 10^{-10}$$

What created the asymmetry?

From Neutrino Masses to Baryogenesis

3

Neutrino oscillations require massive neutrinos, forbidden in the Standard Model.

How do neutrinos get their masses? What nature do neutrinos have? Are they their own anti-particles?

Outline

Neutrinos & Lepton-number violating interactions

- Neutrinos as a window to new physics
- Why lepton-number violation?
- Lepton-number violating operators
- Testability

Leptogenesis & Baryogenesis

- Difficulties to probe high-scale leptogenesis
- Falsifying high-scale leptogenesis
- Low-scale leptogenesis
- High-scale baryogenesis
- Low-scale baryogenesis
- Alternative tests
- Possible links to dark matter

Julia Harz

From Neutrino Masses to Baryogenesis

"Neutrinos, the Standard Model misfits"

Neutrinos.

Julia Harz

Neutrinos – what do we know?

• Within the SM neutrinos are **massless**

$$m_{\nu} = 0$$

Julia Harz

Neutrinos – what do we know?

•

How do neutrinos get their mass?

- Masses of the active neutrinos cannot be explained within the SM
- BUT right-handed neutrinos could help

Julia Harz

From Neutrino Masses to Baryogenesis

9

How do neutrinos get their mass?

$$\begin{array}{ccc} \mathbf{Dirac} & \mathbf{Majorana} \\ \mathcal{L} \supset M_D^{ij} \nu_{L_i} \nu_{R_j}^c + M_M^{ij} \bar{\nu}_{R_i} \nu_{R_j}^c \\ \mathcal{L} \supset M^{ij} \nu \bar{\nu} & M = \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \end{array}$$

Diagonalisation:

$$m_{\nu} = \frac{M_D^2}{M_M} \qquad \qquad \nu \approx \nu_L - \frac{M_D}{M_M} \nu_R^c$$

$$m_N = M_M \qquad \qquad N \approx \frac{M_D}{M_M} \nu_L + \nu_R^c$$

+ Sterile Neutrinos

Where are the right-handed neutrinos (not)?

GAMBIT: NeutrinoBit

M. Chrzaszcz, M. Drewes, T. Gonzalo, JH, S. Krishnamurthy, C. Weniger (2019)

Most comprehensive analysis of see-saw I model with three right-handed neutrinos below the TeV scale

Julia Harz

Lepton-Number Violation

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_1} \mathcal{O}_1^{(5)}$$
$$\mathcal{O}_1^{(5)} = L^{\alpha} L^{\beta} H^{\rho} H^{\sigma} \epsilon_{\alpha \rho} \epsilon_{\beta \sigma}$$
$$3/2 \ 3/2 \ 1 \qquad 1$$

mass dimension

Julia Harz

Lepton-Number Violation

• LNV occurs only at odd mass dimension:

Babu, Leung (2001), de Gouvea, Jenkins (2007), Deppisch, Graf, JH, Huang (2017)

Julia Harz

Neutrino mass generation

• LNV occurs only at odd mass dimension:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{A_{1}}\mathcal{O}_{1}^{(5)} + \sum_{i} \frac{1}{A_{i}^{3}}\mathcal{O}_{i}^{(7)} + \sum_{i} \frac{1}{A_{i}^{5}}\mathcal{O}_{i}^{(9)} + \cdots$$

$$\mathcal{O}_{1}^{(5)} = L^{\alpha}L^{\beta}H^{\rho}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$

$$\mathcal{O}_{16}^{(5)} = L^{\alpha}L^{\beta}e^{c}d^{c}\overline{e}^{c}\overline{u}^{c}\epsilon_{\alpha\beta}$$

$$\mathcal{O}_{16}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\beta}\epsilon_{\beta\sigma}$$

$$\mathcal{O}_{3b}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$

$$\mathcal{O}_{3b}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$

$$\mathcal{O}_{3b}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$

$$\mathcal{O}_{4}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\alpha\sigma}$$

$$\mathcal{O}_{4}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\alpha\sigma}$$

$$\mathcal{O}_{4}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\sigma}\epsilon_{\alpha\sigma}$$

$$\mathcal{O}_{4}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\sigma}\epsilon_{\alpha\sigma}$$

$$\mathcal{O}_{4$$

Julia Harz

DFG 🗄

From Neutrino Masses to Baryogenesis

Probing LNV interactions – 0vββ decay

Ονββ decay probes only first generation!

Julia Harz

Does 0vββ decay directly imply Majorana neutrinos?

Schechter, Valle (1982)

Any ΔL = 2 operator that leads to 0vbb will induce a **Majorana mass contribution** via loop

9-dim ΔL = 2 operator will lead to 0vbb but only **tiny contribution** to neutrino mass

$$\delta m_{\nu} = 10^{-28} \text{eV}$$

Observation of **0vßß decay does not imply that the mass mechanism is the dominant** contribution.

Probing LNV interactions – 0vββ decay

Leptonic and hadronic current with different chirality structure:

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \{ j_{V-A}^{\mu} J_{V-A,\mu}^{\dagger} + \sum_{\alpha,\beta} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} \}$$

$$j_{\beta} = \bar{e} \mathcal{O}_{\beta} \nu$$

$$J_{\alpha}^{\dagger} = \bar{u} \mathcal{O}_{\alpha} d$$

$$\mathcal{O}_{V\pm A} = \gamma^{\mu} (1 \pm \gamma_5)$$

$$\mathcal{O}_{S\pm P} = (1 \pm \gamma_5)$$

$$\mathcal{O}_{T_{R,L}} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}] (1 \pm \gamma_5)$$

$$j_{\beta} = \bar{e} \mathcal{O}_{\beta} \nu$$

$$J_{\alpha}^{\dagger} = \bar{u} \mathcal{O}_{\alpha} d$$

$$\frac{|\epsilon| \times 10^8}{^{76} \text{Ge}} \frac{\epsilon_{V-A}}{41} \frac{\epsilon_{V+A}^{V+A}}{^{76} \text{Ke}} \frac{\epsilon_{S\pm P}^{S+P}}{26} \frac{\epsilon_{T_R}}{12}$$

$$D_{\text{Equation 1}} \frac{\epsilon_{V+A}}{76} \frac{\epsilon_{V+A}}{7} \frac{\epsilon_{V+A}}{7}$$

Julia Harz

From Neutrino Masses to Baryogenesis

Technische Universität München

17

Scales of LNV New Physics

1st generation couplings

From Neutrino Masses to Baryogenesis

Technische Universität München

18

Scales of LNV New Physics

3rd generation couplings

Observation of 0vββ decay does not imply that the mass mechanism is the dominant contribution.

Julia Harz

Baryon Asymmetry.

Julia Harz

Why do we need new physics?

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

baryon number violation

C and CP violation

departure from thermal equilibrium

Julia Harz

Why do we need new physics?

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

There has to be new physics in order to explain our own existence!

Julia Harz

Many theoretical models and ideas...

- Electroweak Baryogenesis Kuzmin, Rubakov, Shasposhnikov (1985)
- Affleck-Dine Baryogenesis Affleck, Dine (1985)
- Spontanous Baryogenesis Kohen, Kaplan (1987)
- **GUT Baryogenesis** Youshimura (1978), Barr (1979), Toussaint et al. (1979), Dimopoulos, Susskind (1978)
- Leptogenesis Fukugita-Yanagida (1986)
- and many new ones!

Which mechanism is realised in nature?

Julia Harz

From Neutrino Masses to Baryogenesis

Many theoretical models and ideas...

- Electroweak Baryogenesis Kuzmin, Rubakov, Shasposhnikov (1985)
- Affleck-Dine Baryogenesis Affleck, Dine (1985)
- Spontanous Baryogenesis Kohen, Kaplan (1987)
- **GUT Baryogenesis** Youshimura (1978), Barr (1979), Toussaint et al. (1979), Dimopoulos, Susskind (1978)
- Leptogenesis Fukugita-Yanagida (1986)
- and many new ones!

Julia Harz

From Neutrino Masses to Baryogenesis

н

Probing Leptogenesis at the high scale

- generation of lepton asymmetry via heavy neutrino decays
- competition with lepton number violating (LNV) washout processes
- conversion to baryon asymmetry via sphaleron processes at

source of CP violation

$$Hz \frac{dN_{N_1}}{dz} = -(\Gamma_D + \Gamma_S)(N_{N_1} - N_{N_1}^{\text{eq}})$$
$$Hz \frac{dN_L}{dz} = \epsilon_1 \Gamma_D(N_{N_1} - N_{N_1}^{\text{eq}}) - \Gamma_W N_L$$

Fukugita et al. 1986

sphaleron processes

 $\Delta L=2$ scattering processes $\Delta L=2$ washout processes

 $\Delta L = 1$

Julia Harz

Probing Leptogenesis at the high scale

Small neutrino masses and washout pushes the right-handed neutrino to high scales.

$$M_N \gtrsim 10^8 \left(\frac{\eta_B}{5 \times 10^{-11}}\right) \left(\frac{0.06 \mathrm{eV}}{m_3}\right) \mathrm{GeV}$$

Ways out: almost degenerate particles, late decays, massive decay (annihilation) products *review by Racker 2016*

Plethora of examples:

- Extension of seesaw type-I by new scalars with same quantum numbers as SM fermions → e.g. long-lived scalars, R-hadrons, heavy sterile neutrinos e.g. Fong et al. 2013
- **Z' models** \rightarrow same-sign di-lepton final states *e.g. Chun 2005*
- Left-right symmetric models \rightarrow falsification by low mass $W_{R}^{}$ e.g. Dev. et al. 2015
- Soft leptogenesis → type-I: charged LFV e.g. Adhikari et al. 2015
 → type-II: same-sign di-lepton resonance, same-sign tetra-leptons

e.g. Chun et al. 2006

26

Probing Leptogenesis at the high scale

Small neutrino masses and washout pushes the right-handed neutrino to high scales.

LNV as a probe of baryogenesis models

The generation of a baryon asymmetry – **baryogenesis** – can be created by a lepton asymmetry – **leptogenesis**:

In turn, lepton number violation (LNV) can destroy a lepton asymmetry, and thus even a baryon asymmetry!

Lepton Asymmetry Washout

 LNV operator would cause washout of pre-existing net lepton asymmetry in the early Universe

$$\mathcal{O}_7 = (L^i d^c) (\bar{e^c} \bar{u^c}) H^j \epsilon_{ij}$$

$$zHn_{\gamma}\frac{d\eta_{L_{e}}}{dz} = -\left(\frac{n_{L_{e}}n_{\bar{e}c}}{n_{L_{e}}^{eq}n_{\bar{e}c}^{eq}} - \frac{n_{u^{c}}n_{\bar{d}c}n_{\bar{H}}}{n_{u^{c}}^{eq}n_{\bar{d}c}^{eq}n_{\bar{H}}^{eq}}\right)\gamma^{eq}(L_{e}\bar{e^{c}} \to u^{c}\bar{d^{c}}\bar{H})$$

$$zHn_{\gamma}\frac{d\eta_{\Delta L_{e}}}{dz} = -c_{D}\frac{T^{2D-4}}{\Lambda_{D}^{2D-8}}\eta_{\Delta L_{e}}$$

$$\gamma^{eq} \propto \frac{T^{2D-4}}{\Lambda_{D}^{2D-8}}$$

 $\frac{\Gamma_W}{H} \equiv \frac{c_D}{n_{\gamma} H} \frac{T^{2D-4}}{\Lambda_D^{2D-8}} = c'_D \frac{\Lambda_{\rm Pl}}{\Lambda_D} \left(\frac{T}{\Lambda_D}\right)^{2D-9} > 1$

- c_D operator specific factor
- η_L lepton density

If Ovßß is observed, washout efficient in the temperature interval

$$\Lambda_D \left(\frac{\Lambda_D}{c'_D \Lambda_{\rm Pl}}\right)^{\frac{1}{2D-9}} \equiv \lambda_D < T < \Lambda_D$$

washout efficient if

Falsifying Baryogenesis with 0vßß

Julia Harz

Programm

From Neutrino Masses to Baryogenesis

Technische Universität München

30

Falsifying Baryogenesis with 0vββ

Julia Harz

Programm

From Neutrino Masses to Baryogenesis

Technische Universität München

31

Lepton asymmetry washout

1st generation couplings

Deppisch, Graf, JH, Huang (2017) Deppisch, JH, Huang, Hirsch, Päs (2015)

Emmy Noether-

Programm

From Neutrino Masses to Baryogenesis

Lepton asymmetry washout

3rd generation couplings

Deppisch, Graf, JH, Huang (2017) Deppisch, JH, Huang, Hirsch, Päs (2015)

Julia Harz

Emmy Noether-

Programm

From Neutrino Masses to Baryogenesis

Distinguishing between different operators

• SuperNEMO will be able to discriminate O_7 from others, due to e_R^* and e_L^* in the final state

- observation of $0\nu\beta\beta$ via $O_{_9}$ and $O_{_{11}}$ will imply observation of LNV at LHC

Falsifying Baryogenesis with the LHC

Washout processes could be observable at the LHC

Deppisch, **Harz**, Hirsch, Phys. Rev. Lett. (2014) Deppisch, **Harz**, Hirsch, Päs, Int. J. Mod. Phys. A (2015)

From Neutrino Masses to Baryogenesis

35

Combining LHC & 0vββ

Comprehensive analysis confirms EFT results and shows interesting interplay between collider and 0vββ reach. JH, Ramsey-Musolf, Shen, Urrutia, in preparation

36

Constraining LNV interactions with rare kaon decays

• GIM suppressed

Not explicit LNV!

- No GIM suppression
- Includes first and second generation

How are higher dimensional operators constraint by rare kaon decays?

Julia Harz

Usage of known hadronic matrix elements / form factors

• Alternative approach: SMEFT matched on chiral perturbation theory Li, M

Li, Ma, Schmidt (2019)

Emmy Noether

From Neutrino Masses to Baryogenesis

Constraining power at E949

• SM, lepton number conserving vector current

$$\mathcal{L}_{\mathrm{SM}}^{K \to \pi \nu \bar{\nu}} = \frac{1}{\Lambda_{\mathrm{SM}}^2} \left(\bar{\nu}_i \gamma^{\mu} \nu_i \right) \left(\bar{d} \gamma_{\mu} s \right)$$

• **BSM**, lepton number **violating scalar** current

$$\mathcal{L}_{\mathrm{BSM}}^{K \to \pi \nu \nu} = \frac{v}{\Lambda_{\mathrm{BSM}}^2} \left(\nu_i \nu_j \right) \left(\bar{ds} \right)$$

- → different phase space distribution
- different acceptance:

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{E949}^{\text{vector}} < 3.35 \times 10^{-10} \text{ at } 90\% \text{ CL}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{E949}^{\text{scalar}} < 21 \times 10^{-10} \text{ at } 90\% \text{ CL}$

39

Constraining power at NA62

Summary of sensitivity to scalar current (based on kinematics only):

Experiment	SM (vector)	LNV (scalar)
NA62 SR 1	6%	0.3%
NA62 SR 2	17%	15%
E949 $\pi \nu \overline{\nu}(1)$	29%	2%
E949 $\pi\nu\overline{\nu}(2)$	45%	38%
КОТО	64%	30%

Experiments are generally more sensitive to vector currents

Possibility to disentangle a possible signal by improving on experimental sensitivity and strategy?

Constraining power at NA62

For LNV more events in SR1 expected. for LNC more events in SR2 expected.

Putting pieces together

1st generation couplings

\mathcal{O}	$1/\Lambda^2_{K\to\pi\nu\nu}$	$\sum_{i} \Lambda_{iisd}^{E949}$ [TeV]	$m_{ u}$	$\Lambda^{m_{\nu}}$ [TeV]
1^{y_d}	$\frac{v^3}{\Lambda^5}$	2.4	$rac{y_d}{16\pi^2}rac{v^4}{\Lambda^3}$	11.6
3b	$\frac{v}{\Lambda^3}$	11.5	$\frac{y_d}{16\pi^2}\frac{v^2}{\Lambda}$	5.2×10^4
$3b^{H^2}$	$f(\Lambda)rac{v}{\Lambda^3}$	5.7	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330
5	$\frac{1}{16\pi^2}\frac{v}{\Lambda^3}$	2.6	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	330
10	$\frac{1}{16\pi^2} \frac{y_e v}{\Lambda^3}$	0.8	$\frac{y_e y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	9.6×10^{-4}
11b	$\frac{1}{16\pi^2} \frac{y_d v}{\Lambda^3}$	0.8	$\frac{y_d^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$8.9 imes 10^{-3}$
14b	$\frac{1}{16\pi^2} \frac{y_u v}{\Lambda^3}$	2.9	$\left \frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} \right $	4.1×10^{-3}
66	$f(\Lambda)\frac{v}{\Lambda^3}$	5.1	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330

Sensitivity to different flavors than most constraining $0\nu\beta\beta$!

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$
$K^+ \to \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} \ [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$
$K_L \to \pi^0 \nu \nu$	$BR_{current}^{KOTO} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$

Putting pieces together

1st generation couplings

\mathcal{O}	$1/\Lambda^2_{K \to \pi \nu \nu}$	$\sum_{i} \Lambda_{iisd}^{E949}$ [TeV]	$m_{ u}$	$\Lambda^{m_{\nu}}$ [TeV]
1^{y_d}	$\frac{v^3}{\Lambda 5}$	2.4	$\frac{y_d}{16\pi^2} \frac{v^4}{\Lambda^3}$	11.6
3b	$\frac{v}{\Lambda^3}$	11.5	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda}$	5.2×10^4
$3b^{H^2}$	$f(\Lambda) \frac{v}{\Lambda^3}$	5.7	$rac{y_d}{16\pi^2}rac{v^2}{\Lambda}f(\Lambda)$	330
5	$\frac{1}{16\pi^2}\frac{v}{\Lambda^3}$	2.6	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	330
10	$\frac{1}{16\pi^2} \frac{y_e v}{\Lambda^3}$	0.8	${y_e y_d\over (16\pi^2)^2}{v^2\over\Lambda}$	9.6×10^{-4}
11b	$\frac{1}{16\pi^2}\frac{y_d v}{\Lambda^3}$	0.8	$\frac{y_d^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	8.9×10^{-3}
14b	$\frac{1}{16\pi^2} \frac{y_u v}{\Lambda^3}$	2.9	$\frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	4.1×10^{-3}
66	$f(\Lambda) \frac{v}{\Lambda^3}$	5.1	$rac{y_d}{16\pi^2}rac{v^2}{\Lambda}f(\Lambda)$	330

Sensitivity to different flavors than most constraining $0\nu\beta\beta$!

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$
$K^+ \to \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$
$K_L \to \pi^0 \nu \nu$	$BR_{current}^{KOTO} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$

Putting pieces together

1st generation couplings

\mathcal{O}	$1/\Lambda^2_{K \to \pi \nu \nu}$	$\sum_{i} \Lambda_{iisd}^{E949}$ [TeV]	$m_{ u}$	$\Lambda^{m_{\nu}}$ [TeV]
1^{y_d}	$\frac{v^3}{\Lambda^5}$	2.4	$\frac{y_d}{16\pi^2}\frac{v^4}{\Lambda^3}$	11.6
3b	$\frac{v}{\Lambda^3}$	11.5	$\frac{y_d}{16\pi^2}\frac{v^2}{\Lambda}$	5.2×10^4
$3b^{H^2}$	$f(\Lambda)rac{v}{\Lambda^3}$	5.7	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330
5	$\frac{1}{16\pi^2}\frac{v}{\Lambda^3}$	2.6	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	330
10	$\frac{1}{16\pi^2}\frac{y_ev}{\Lambda^3}$	0.8	$\frac{y_e y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	9.6×10^{-4}
11b	$rac{1}{16\pi^2}rac{y_dv}{\Lambda^3}$	0.8	$\frac{y_d^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$8.9 imes 10^{-3}$
14b	$\frac{1}{16\pi^2}\frac{y_u v}{\Lambda^3}$	2.9	$\frac{y_d y_u}{\left(16\pi^2\right)^2} \frac{v^2}{\Lambda}$	4.1×10^{-3}
66	$f(\Lambda)rac{v}{\Lambda^3}$	5.1	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330

Sensitivity to different flavors than most constraining $0\nu\beta\beta$!

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$
$K^+ \to \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} \ [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$
$K_L \to \pi^0 \nu \nu$	$BR_{\text{current}}^{\text{KOTO}} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$

Summary

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]	$\hat{\lambda} \; [\text{TeV}]$
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$	0.213
$K^+ \to \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$	0.196
$K_L \to \pi^0 \nu \nu$	$BR_{current}^{KOTO} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$	0.178
$B^+ \to \pi^+ \nu \nu$	BR < 1.4×10^{-5} [52]	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibd} > 1.4$	0.174
$B^+ \to K^+ \nu \nu$	BR < 1.6×10^{-5} [52]	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibs} > 1.4$	0.174
$B^0 \to \pi^0 \nu \nu$	$BR < 9 \times 10^{-6} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibd} > 1.5$	0.174
$B^0 \to K^0 \nu \nu$	BR $< 2.6 \times 10^{-5}$ [52]	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibs} > 1.3$	0.174
$K^+ \to \mu^+ \bar{\nu}_e$	BR < 3.3×10^{-3} [32]	\mathcal{O}_{3a}	$\Lambda_{\mu esu} > 2.4$	0.174
$\pi^+ \to \mu^+ \bar{\nu}_e$	BR < 1.5×10^{-3} [32]	\mathcal{O}_{3a}	$\Lambda_{\mu eud} > 1.9$	0.174
$\pi^0 \to \nu \nu$	$BR < 2.9 \times 10^{-13} [78]$	\mathcal{O}_{3b}	$\Lambda_{\nu\nu ud} > 3.4$	0.174
0 uetaeta	$T_{1/2}^{^{136}\text{Xe}} \ge 1.07 \times 10^{26} \text{ yrs} [79]$	\mathcal{O}_{3b}	$\Lambda_{eeud} > 330$	3.5
$\mu^- \to e^+$	$R_{\mu^-e^+}^{\dot{\mathrm{Ti}}} < 1.7 \times 10^{-12} \ [80]$	\mathcal{O}_{14b}	$\Lambda_{\mu eud} > 0.01$	0.174

Bright future perspective – B-meson constraints still in LHC reach. Could imply strong lepton asymmetry washout^{*}).

*) If LNV interaction is confirmed.

45

UV complete example: Leptoquarks I

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} + \mu S_1 H^{\dagger \alpha} \tilde{R}_{2\alpha} - g_1^{ik} \bar{L}_{i\alpha} i \sigma_2^{\alpha\beta} \tilde{R}_{2\beta}^* \overline{d}_k^c - g_2^{jn} Q_n^{\alpha} L_j^{\beta} \epsilon_{\alpha\beta} S_1 - g_3^{jn} \overline{u}_n^c e_j S_1 + \text{h.c.}$$
Cata, Mannel (2019)
$$\tilde{R}_2 \in 3, 2, 1/6, \qquad \tilde{R}_2 - 1 + \frac{1}{3}$$

$$S_1 \in \bar{3}, 1, 1/3 \qquad \tilde{R}_1 - 1 - \frac{1}{3}$$

$$\mathcal{L}_{7D} = \underbrace{\frac{\mu g_1^{ik} g_2^{jn}}{m_{\tilde{R}_2}^2 m_{\tilde{S}_1}^2} L_i^{\alpha} H^{\beta} d_k^c Q_n^{\mu} L_j^{\nu} \epsilon_{\alpha\beta} \epsilon_{\mu\nu}}_{O_{3b}^{(7)}} + \underbrace{\frac{\mu g_1^{ik} g_3^{jn}}{m_{\tilde{R}_2}^2 m_{\tilde{S}_1}^2} L_i^{\alpha} H^{\beta} d_k^c Q_n^{\mu} L_j^{\nu} \epsilon_{\alpha\beta} \epsilon_{\mu\nu}}_{V_L^{\beta}} + \underbrace{\frac{\mu g_1^{ik} g_3^{jn}}{m_{\tilde{R}_2}^2 m_{\tilde{S}_1}^2} L_i^{\alpha} H^{\beta} d_k^c u_n^c e_j^c \epsilon_{\alpha\beta}}_{O_{3b}^{(7)}} + \underbrace{\frac{1}{A_{ijkn}^3} O_{3b}^{(7)}}_{O_{3b}^{(7)}} + \underbrace{\frac{1}{A_{ijkn}^3} O_{8}^{(7)}}_{V_L^{\beta}} + \underbrace{\frac{1}{A_{ijkn}^3} + \underbrace{\frac{1}{A_{ijkn}^3} O_{8}^{(7)}}_{V_L^{\beta}} + \underbrace{\frac{1}{A_{ijkn}^3} + \underbrace$$

Julia Harz

UV complete example: Leptoquarks II

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} + \mu S_1 H^{\dagger \alpha} \tilde{R}_{2\alpha} - g_1^{ik} \bar{L}_{i\alpha} i \sigma_2^{\alpha\beta} \tilde{R}_{2\beta}^* \overline{d}_k^c - g_2^{jn} Q_n^{\alpha} L_j^{\beta} \epsilon_{\alpha\beta} S_1 - g_3^{jn} \bar{u}_n^c e_j S_1 + \text{h.c.}$$

$$(m_{\nu})_{i} = \sum_{j} \frac{3\sin(2\theta)g^{2}V_{cd}\tilde{g}_{1}^{id}\tilde{g}_{2}^{jc}U_{ji}}{512\pi^{4}}m_{d}I(m_{\mathrm{LQ}_{1}}^{2}, m_{\mathrm{LQ}_{2}}^{2}, m_{W}^{2})$$

 $(m_{\nu})_i \approx 0.08 eV$

A contribution of leptoquarks to rare kaon decays would imply a non-trivial flavour pattern to explain smallness of neutrino masses.

Probing Leptogenesis at the GeV Scale

Leptogenesis via the **Akhmedov-Rubakov-Smirnov (ARS)** mechanism

- Yukawa couplings yield small values with a certain hierarchy (equilibrium vs. non-eq.)
- *C*P due to mixing, oscillations distribute individual lepton number unevenly
- the one in equilibrium translates its L number via sphalerons to the active sector

 → baryon asymmetry

 Akhmedov et al. 1998

For N=2 it was shown that the baryon asymmetry is predictable by combination of different experimental measurements:

- Neutrino oscillation experiments
- Neutrinoless double beta decay experiments
- Direct searches for heavy neutral leptons Hernandez et al. 2015, Abada et al. 2015, Drewes et al. 2016

Abada et al. 2018

Julia Harz

From Neutrino Masses to Baryogenesis

Leptogenesis & Sterile Neutrinos

Leptogenesis & Gravitational waves?

NanoGrav: Sign of cosmic strings?

If particle production dominates, stochastic gravitational wave spectrum depends on

 $\Omega_{\rm GW} h^2 \propto G \mu^2$

 $\mu \sim v^2$

cosmic string tension breaking scale

Hindmarsh (2011) Buchmueller, Domcke, Kamada, Schmitz (2013)

Direct and indirect links:

 cosmic string network is a generic prediction of the seesaw mechanism when B-L is broken spontaneously

From Neutrino Masses to Baryogenesis

High scale baryogenesis

Testable B violation scenarios:

- $\Delta B = 1$: proton decay
- Δ B = 2: n-nbar oscillations

11 П

 $au_{n\overline{n}} \ge 10^{10} s$ Future sensitivity at ESS:

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the European Spallation Source, Addazi et al. (2020)

High scale baryogenesis

Simplified model:

$$\mathcal{L}_{II} = f_{ij}^{dd} X_{dd} d_{iR} d_{jR} + \frac{f_{ij}^{ud}}{\sqrt{2}} X_{ud} (u_{iR} d_{jR} + u_{jR} d_{iR})$$
$$+ \lambda \xi X_{dd} X_{ud} X_{ud} + \text{h.c.}$$

Interesting interplay with other experiments:

- N-nbar oscillations
- Di-nucleon decay
- LHC

Emmy Noether-

Programm

meson oscillations

10⁻⁷ 10⁻¹⁰ 10⁻¹³ — SuperKamiokande (Current) 10⁻¹⁶ — DUNE 10⁻¹⁹ NNBAR

Can we learn something about baryogenesis by the complementarity of experiments?

10⁻²²

Fridell, JH, Hati, in preparation

From Neutrino Masses to Baryogenesis

Technische Universität München

 $\lambda v_{B-L} = 6 \times 10^{14} \text{ GeV}$

 $m_{X_{dd}} = 10^{14} \text{ GeV} \quad \epsilon = 1$

Low scale baryogenesis

Alonso-Alvarez, Elor, Nelson, Xiao (2019) **Baryogenesis and Dark Matter from B Mesons,** Elor, Escudero, Nelson (2019)

Julia Harz

Many other possibilities...

DFG :

Probing freeze-in dark matter and baryogenesis

 $y_{\chi}Y_F X_{SM}\chi_s$

Review Article: The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Bernal, Heikinheimo, Tenkanen, Tuominen, Vaskonen (2017)

(1) Thermal equilibrium regime (T >> m)

 $y \sim \mathcal{O}(10^{-7})$

DM is feebly interacting with the SM bath; abundance negligible

(2) DM production

DM gets produced via decay of a heavier particle Y that is in equilibrium with the SM bath

 $Y \to SM \chi$

(3) Freeze-in

when T falls below mass of parent particle Y, production gets Boltzmann suppressed

 $n_Y \approx \exp(-m_Y/T)$

Technische Universität München

55

SM

Probing freeze-in dark matter and baryogenesis

Assuming that DM is mostly generated by decays of the parent F, we can relate the **relic abundance** with the parent particle life time

Possibility to falsify baryogenesis / leptogenesis models that rely on effective sphaleron interactions.

Belanger, JH et al. (2018)

56

From Neutrino Masses to Baryogenesis

Conclusions

Julia Harz

Conclusions

We live in a world full of interesting mysteries! Astroparticle physics might guide us to new physics.

Julia Harz

Thank you for your attention!

Julia Harz

Julia Harz

