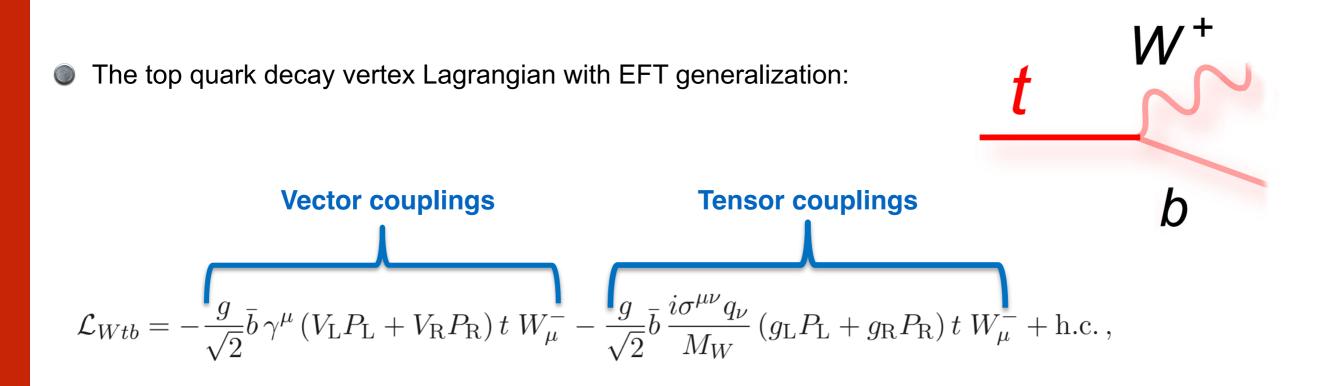
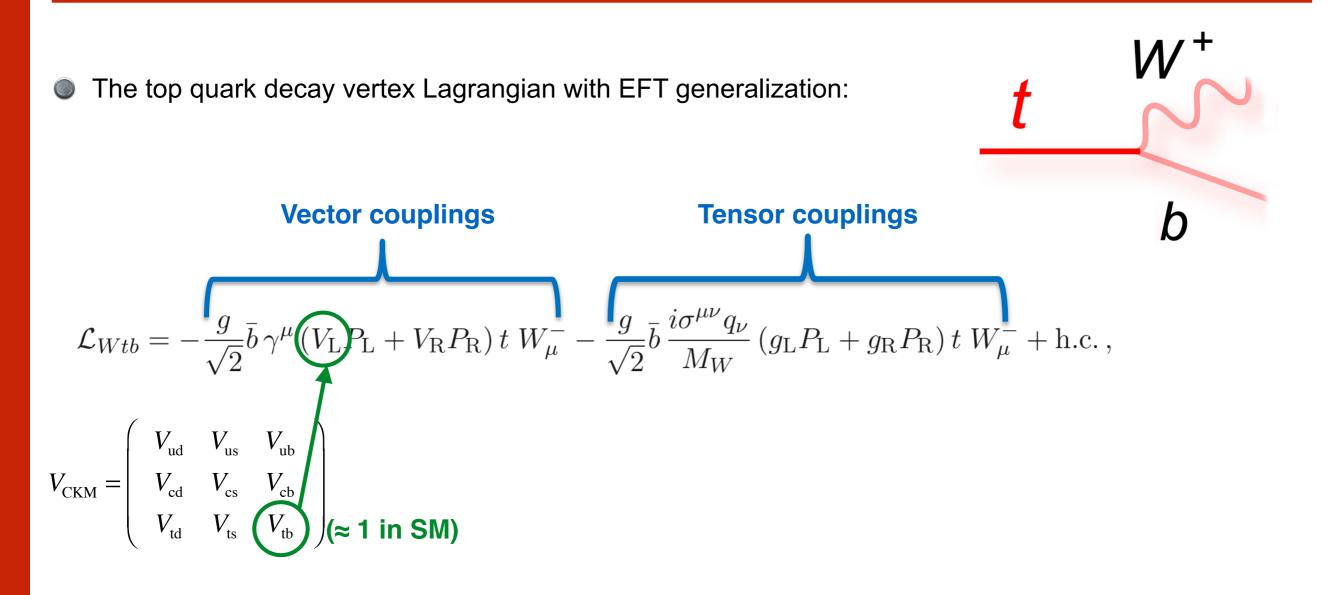
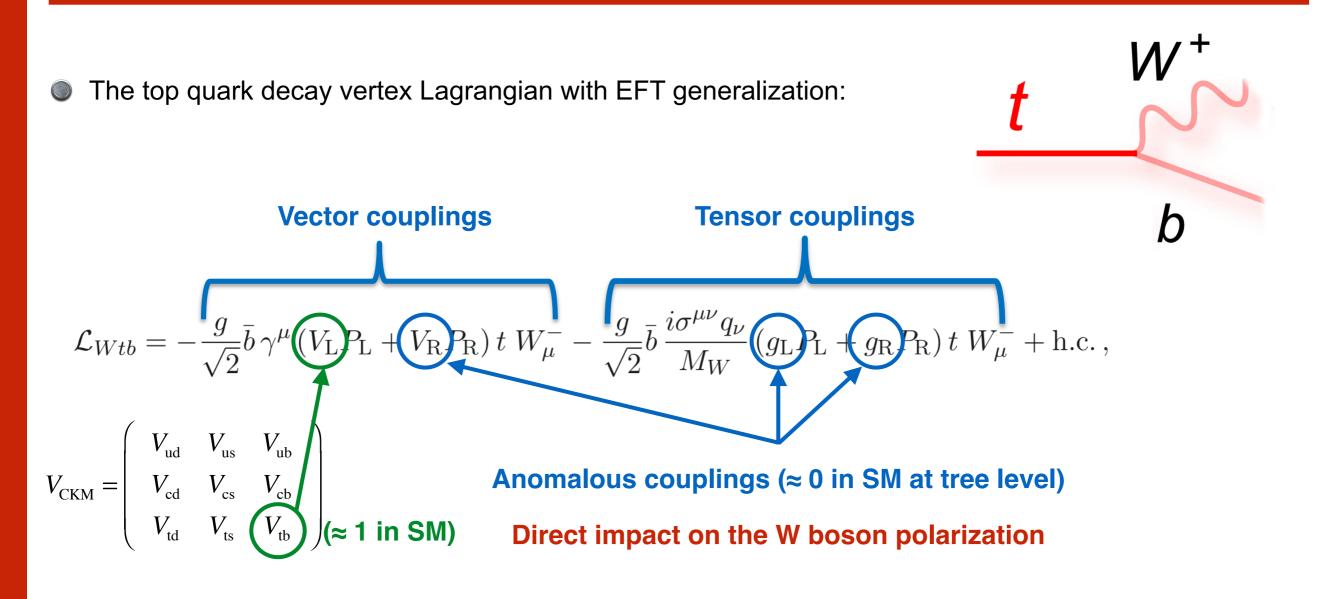
Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data @ 8 TeV

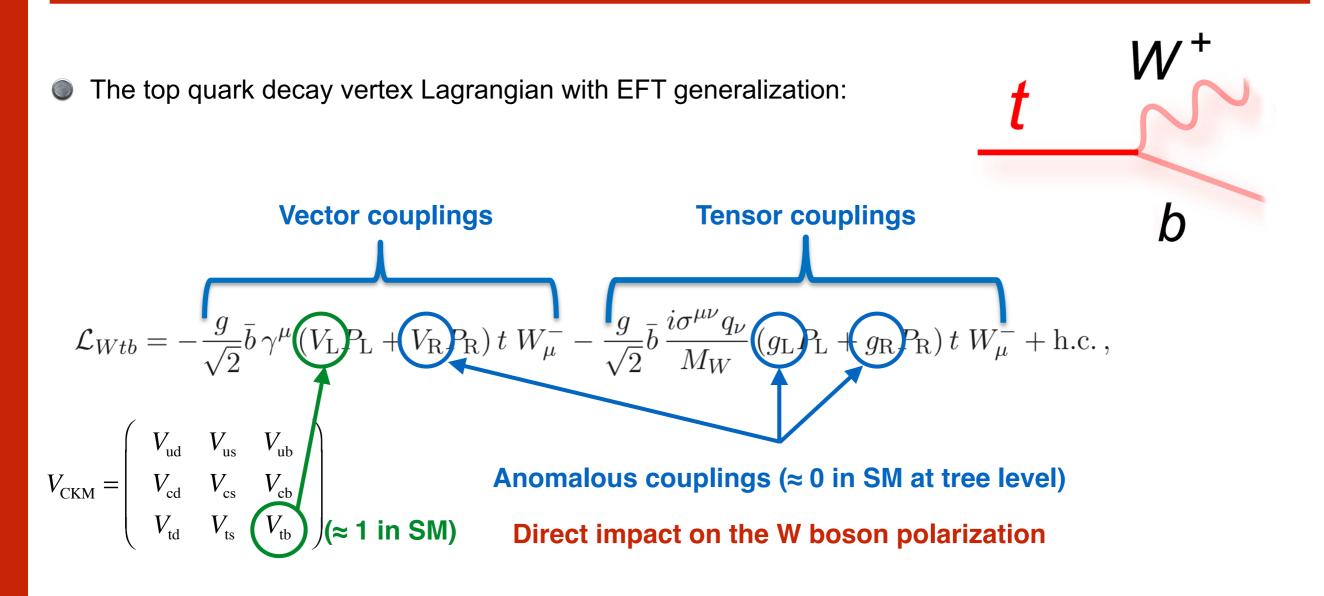
LHCTOPWG - May 14th, 2020

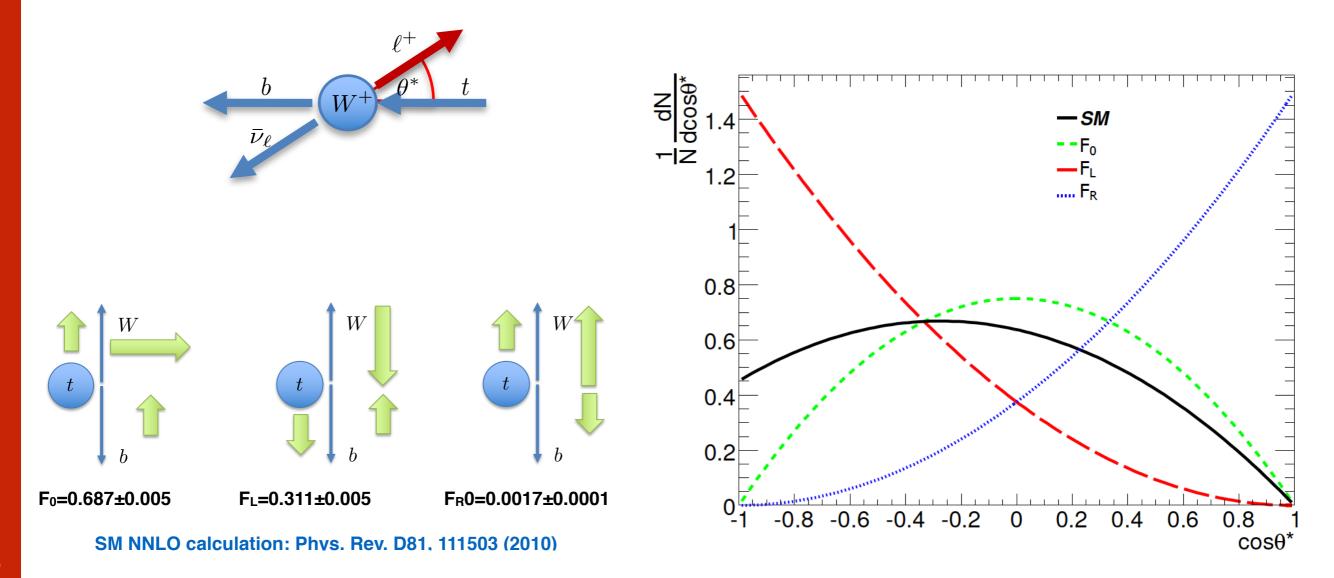
Mohammad J. Kareem


On behalf of the ATLAS and CMS Collaborations








Measuring W boson polarization with high precision:

- Good test of the Standard Model prediction
- Probe for new physics processes

W polarization in top quark decay is sensitive to $\cos\theta^*$ distribution

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^* \right) F_0 + \frac{3}{8} \left(1 - \cos\theta^* \right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^* \right)^2 F_R$$

ATLAS+CMS Preliminary LHCtopWG May 2017		tota	▼ _ I stat
Theory (NNLO QCD) PRD 81 (2010) 111503 (R)	F _R	FL	Fo
$-\bullet$ $-\bullet$ Data (F _R /F _L /F ₀)			
ATLAS 2010 single lepton, √s=7 TeV, L _{int} =35 pb ⁻¹ ATLAS-CONF-2011-037	H-∎-H	+++	H +
ATLAS 2011 single lepton and dilepton, Vs=7 TeV, L _{int} =1.04 ft	o ⁻¹ ⊢∎ -1	Hall	┠─┼ <mark>┷</mark> ┼─┨
CMS 2011 single lepton, v s=7 TeV, L _{int} =2.2 fb ⁻¹ *		┠┼═┼┨	H—▲—-H
LHC combination, s=7 TeV ATLAS-CONF-2013-033, CMS-PAS-TOP-12-025	ŀ●·I	l \≡ H	┠┼╼┼┦
ATLAS 2012 single lepton, √s=8 TeV, L _{int} =20.2 fb ⁻¹ EPJC 77 (2017) 264	M	•	M
CMS 2011 single lepton, √s=7 TeV, L _{int} =5.0 fb ⁻¹		Hert	H-4-H
CMS 2012 single top, Vs=8 TeV, L _{int} =19.7 fb ⁻¹	H	H=H	H≁H
CMS 2012 single lepton, Vs=8 TeV, L _{int} =19.8 fb ⁻¹	NH I		ы
CMS 2012 dilepton, Vs=8 TeV, L _{int} =19.7 fb ⁻¹	HH	H HH	Hall
* superseded by published res	sult		
	0		0.5 1 helicity fracti

CMS

Analysis methods @ 8TeV

- Analysis method= template fitting:
- 3 signal templates (obtained from reweighting the SM $\cos\theta^*$ distribution) + 5 bkg. $\cos\theta^*$ distributions 0
- Binned likelihood fit:

$$\mathscr{L} = \prod_{k=1}^{N_{\text{bins}}} \text{Poisson}(n_{\text{data},k}, n_{\text{exp},k}) \prod_{j=1}^{N_{\text{bkg}}} \frac{1}{\sqrt{2\pi}\sigma_{\text{bkg},j}} \exp\left(\frac{-(n_{\text{bkg},j} - \hat{n}_{\text{bkg},j})^2}{2\sigma_{\text{bkg},j}^2}\right) \qquad \qquad n_{\text{exp}} = n_0 + n_{\text{L}} + n_{\text{R}} + n_{\text{exp}} + n_{\text{Frem. bkg}} + n_{\text{Frem. bkg}} + n_{\text{W+light}} + n_{\text{W+c}} + n_{\text{W+bb/cc}} + n_{\text{fake}} + n_{\text{rem. bkg}} + n_{\text{Frem. bkg}} + n_{\text{W+bb/cc}} + n_{\text{Frem. bkg}} + n_{\text{$$

Fit parameters:

- Yields of signal (**n0, nL, nR**) and background (W+jets, Lepton fakes, Remaining backgrounds)
- Normalization uncertainties used as Gaussian priors to constrain background normalization
- Background normalization uncertainty effect is reflected in the statistical uncertainty
- W boson polarization extracted as: \bigcirc

$$F_{i} = \frac{N_{i}}{N_{0} + N_{L} + N_{R}}, \quad n_{i} = \epsilon_{i}^{\text{sel}} N_{i} \quad \text{for } i = 0, L, R.$$

$$F_{i} = \frac{N_{i}}{N_{0} + N_{L} + N_{R}}, \quad n_{i} = \epsilon_{i}^{\text{sel}} N_{i} \quad \text{for } i = 0, L, R.$$

$$F_{i} = \frac{N_{i}}{N_{0} + N_{L} + N_{R}}, \quad n_{i} = \epsilon_{i}^{\text{sel}} N_{i} \quad \text{for } i = 0, L, R.$$

$$F_{i} = 0.709 \pm 0.012 \quad (\text{stat.} + \text{bkg. norm.}) + \frac{0.015}{-0.014} \quad (\text{syst.})$$

$$F_{L} = 0.299 \pm 0.008 \quad (\text{stat.} + \text{bkg. norm.}) + \frac{0.013}{-0.012} \quad (\text{syst.})$$

$$F_{R} = -0.008 \pm 0.006 \quad (\text{stat.} + \text{bkg. norm.}) \pm 0.012 \quad (\text{syst.})$$

Best Fit

Analysis methods @ 8TeV

- Analysis method: event-by-event reweighting of the SM value of $Cos\theta^*$ in Monte Carlo
 - Binned likelihood fit:

9

$$\mathcal{L}(\vec{F}) = \prod_{i} \frac{N_{\text{MC}}(i; \vec{F})^{N_{\text{data}}(i)}}{\left[N_{\text{data}}(i)\right]!} \exp\left[-N_{\text{MC}}(i; \vec{F})\right] \qquad \qquad \blacklozenge \qquad N_{\text{MC}} = \mathbf{N}_{\text{tt}} + \mathbf{N}_{\text{sing-t}} + N_{\text{bkg}}$$

• Number of expected **t** events in(**N**_{MC}) in each bin is modified as:

$$w_{t\bar{t}/t,}\left(\cos\theta_{gen}^{*};\vec{F}\right) \equiv \frac{\frac{3}{8}F_{L}\left(1-\csc\theta_{gen}^{*}\right)^{2} + \frac{3}{4}F_{0}\sin^{2}\theta_{gen}^{*} + \frac{3}{8}F_{R}\left(1+\csc\theta_{gen}^{*}\right)^{2}}{\frac{3}{8}F_{L}^{SM}\left(1-\csc\theta_{gen}^{*}\right)^{2} + \frac{3}{4}F_{0}^{SM}\sin^{2}\theta_{gen}^{*} + \frac{3}{8}F_{R}^{SM}\left(1+\csc\theta_{gen}^{*}\right)^{2}}$$

$$N_{t\bar{t}}(i;\vec{F}) \propto \mathcal{F}_{t\bar{t}}\left[\sum_{t\bar{t} \text{ in bin i}} w_{t\bar{t}}(\cos\theta_{gen}^*;\vec{F})\right] \qquad N_{sing-t}(i;\vec{F}) \propto \sum_{sing-t \text{ in bin i}} w_t(\cos\theta_{gen}^*;\vec{F})$$

- Fit parameters: F_{tt} (normalization of the ttbar yield), F_0 and F_{R} .
- Background normalizations are fixed —> normalization uncertainty taken as separate systematic
- $\bullet\,$ Final result (I+jets) is BLUE combination of e+jets and $\mu\text{+jets}$

For this combination the individual e+jets and μ +jets measurements are used as inputs

JHEP 01 (20	015) 053	1			PLB 762 (2016) 512
top pair (l+	cop pair (I+jets)			single top t-chan. (I+jets)	
Channel	$F_0 \pm (\text{stat}) \pm (\text{syst})$	$F_L \pm (\text{stat}) \pm (\text{syst})$	$F_R \pm (\text{stat}) \pm (\text{syst})$		$F_{\rm L} = 0.298 \pm 0.028$ (stat) ± 0.032 (syst),
e + jets	$0.705 \pm 0.013 \pm 0.037$	$0.304 \pm 0.009 \pm 0.020$	$-0.009 \pm 0.005 \pm 0.021$	+	$F_0 = 0.720 \pm 0.039 (\text{stat}) \pm 0.037 (\text{syst}),$
$\mu + jets$ $\ell + jets$	$\begin{array}{c} 0.685 \pm 0.013 \pm 0.024 \\ 0.681 \pm 0.012 \pm 0.023 \end{array}$	$\begin{array}{r} 0.328 \pm 0.009 \pm 0.014 \\ 0.323 \pm 0.008 \pm 0.014 \end{array}$	$\frac{-0.013 \pm 0.005 \pm 0.017}{-0.004 \pm 0.005 \pm 0.014}$		$F_{\rm R} = -0.018 \pm 0.019 ({\rm stat}) \pm 0.011 ({\rm syst}),$

Grouping of systematic uncertainties

Uncertasinty source	ATLAS EXPERIMENT	CMS
Jet energy scale	\checkmark	\checkmark
Jet energy resolution	\checkmark	\checkmark
b-tagging efficiency	\checkmark	\checkmark
Lepton eff.	\checkmark	\checkmark
Jet vertex fraction	\checkmark	n.a.
Jet reconstruction eff.	\checkmark	n.a.
Top quark mass	\checkmark	\checkmark
Showering & hadronisation		
ME generator		
Matching scale	n.a.	
PDF	\checkmark	\checkmark
Pile-up	n.a.	\checkmark
Top-pT reweighting	n.a.	✓ *
ISR/FSR (var. h_{damp} , μ_R , μ_F)		
μ _R , μ _F scale	n.a.	
Single-top method	n.a.	√ **
MC statistics	\checkmark	\checkmark
Bkg. norm. uncertainty		
Stat. uncertainty		

*) Only in CMS I+jets**) Only in CMS single-top

10

To harmonize the treatment of the systematic uncertainties evaluation across the input measurements:

- The uncertainty values in the ATLAS measurement are symmetrized, as the BLUE algorithm used to perform the combination accepts only symmetric uncertainties
- The top quark pair modelling uncertainties in the CMS (e+jets) and CMS (µ+jets) measurements are recalculated without the contributions from the limited number of events in the samples used to estimate them.
- Top quark mass:
 - ATLAS measurement used uncertainty of ±0.7 GeV
 - CMS measurements used an uncertainty of ±1 GeV
 - to keep consistency across the various input measurements, this effect in the ATLAS measurement is re-estimated using uncertainty of ±1 GeV in top quark mass

Input correlations: ρ(F_i,F_j)

Correlations within the same measurement

• ATLAS: from covariance matrix of each systematic uncertainty category

$$\rho(F_0, F_L) = \frac{\sigma^2[F_R] - \sigma^2[F_0] - \sigma^2[F_L]}{2\sigma[F_0]\sigma[F_L]}$$

Input correlations: ρ(F_i,F_j)

Correlations within the same measurement

• ATLAS: from covariance matrix of each systematic uncertainty category

• CMS:
$$\rho(F_0, F_L) = \frac{\sigma^2[F_R] - \sigma^2[F_0] - \sigma^2[F_L]}{2\sigma[F_0]\sigma[F_L]}$$

Correlations between the ATLAS and CMS experiments $\rho_{LHC}(F_i, F_j)$

- Assuming: $\rho_{LHC}(F_0,F_0) = \rho_{LHC}(F_L,F_L)$ and $\rho_{LHC}(F_0,F_L) = -\rho_{LHC}(F_0,F_0)$
- Detector modelling, JER, data-driven background estimation and method-specific uncertainty \rightarrow uncorrelated, $\rho_{LHC}(F_0,F_0)=0$
- Radiation & scales, JES \rightarrow partially correlated, $\rho_{LHC}(F_0,F_0)=0.5, 0.2$
- All other sources \rightarrow fully correlated, $\rho_{LHC}(F_0,F_0) = +1$

Input correlations: ρ(F_i,F_j)

Correlations within the same measurement

• ATLAS: from covariance matrix of each systematic uncertainty category

• CMS:
$$\rho(F_0, F_L) = \frac{\sigma^2[F_R] - \sigma^2[F_0] - \sigma^2[F_L]}{2\sigma[F_0]\sigma[F_L]}$$

Correlations between the ATLAS and CMS experiments $\rho_{LHC}(F_i, F_j)$

- Assuming: $\rho_{LHC}(F_0,F_0) = \rho_{LHC}(F_L,F_L)$ and $\rho_{LHC}(F_0,F_L) = -\rho_{LHC}(F_0,F_0)$
- Detector modelling, JER, data-driven background estimation and method-specific uncertainty
 → uncorrelated, p_{LHC}(F₀,F₀)= 0
- Radiation & scales, JES \rightarrow partially correlated, $\rho_{LHC}(F_0,F_0)=0.5, 0.2$
- All other sources \rightarrow fully correlated, $\rho_{LHC}(F_0,F_0) = +1$

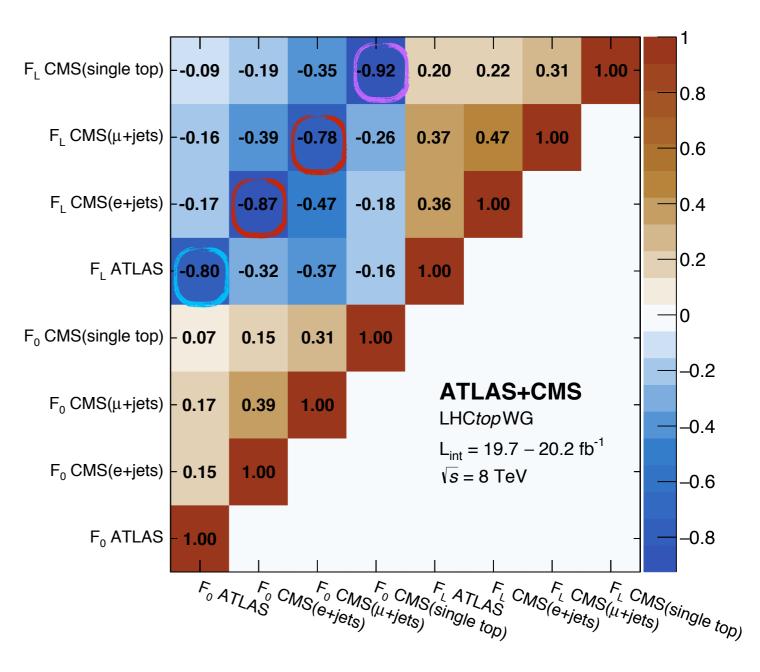
Correlations between measurements within the CMS experiment

- Assuming $\rho_{\text{CMS}}(F_i,F_j)_{(\text{st, }e+jets)} = \rho_{\text{CMS}}(F_i,F_j)_{(\text{st, }mu+jets)} = \rho_{\text{CMS}}(F_i,F_j)_{(\text{st, }I+jets)}$
- In all cases: assuming $\rho_{CMS}(F_0,F_0) = \rho_{CMS}(F_L,F_L)$ and $\rho_{CMS}(F_0,F_L) = -\rho_{CMS}(F_0,F_0)$
- Data statistics, background estimation, lepton efficiency, MC statistics → uncorrelated
- All other sources → fully correlated

$$\rho_{LHC}(F_i,F_i) = \rho(F_{i,ATLAS}, F_{i,CMS})$$

$$\rho_{\text{CMS, e/mu+jets}}(\mathbf{F}_i, \mathbf{F}_i) = \rho(\mathbf{F}_{i,e+jets}, \mathbf{F}_{i,mu+jets})$$

 $\rho_{\text{CMS, I+jets/st}}(F_i, F_i) = \rho(F_{i, l+jets}, F_{i, st})$


	$\rho_{\rm LHC}(F_i,F_i)$	$\rho_{\rm CMS}^{{\rm e},\mu+{\rm jets}}(F_i,F_i)$	$\rho_{\text{CMS}}^{\text{st},\ell+\text{jets}}(F_i,F_i)$			
Uncertainty Category		CITIS	- Child			
Samples size and background determination						
Stat+bkg	0.0	0.0^{\dagger}	0.0^{\dagger}			
Size of simulated samples	0.0	0.0	0.0			
Detector modelling						
JES	0.2^{\dagger}	1.0	1.0			
JER	0.0	1.0	1.0			
b tagging	0.0	1.0	1.0			
JVF	0.0^{*}	0.0^{*}	0.0^{*}			
Jet reconstruction efficiency	0.0^{*}	0.0^{*}	0.0^{*}			
Lepton efficiency	0.0	0.0	0.0			
Pileup	0.0^{*}	1.0	1.0			
Signal modelling						
Top quark mass	1.0	1.0	1.0			
Simulation model choice	1.0	1.0	1.0			
Radiation and scales	0.5^{\dagger}	1.0	1.0^{\dagger}			
Top quark $p_{\rm T}$	0.0^{*}	1.0	0.0^{*}			
PDF	1.0	1.0	1.0			
Single top method	0.0*	0.0*	0.0*			

Correlation matrix

As a cross-check:

comparing the total correlations
 from the published input results of
 each measurement with the
 corresponding values from the
 input correlation matrix

Measurement	ATLAS	CMS ljets		CMSst
Direct calculation	-0.819	-0.86	-0.79	-0.92
Original publication	-0.55	-0.87		-0.80

Errata: doi.org/10.1140/epjc/s10052-018-6520-7

Results

The Best Linear Unbiased Estimate (BLUE) method is used for the combination

	LHC combination		
	$\overline{F_0}$ F_L		
Fractions	0.693	0.315	
Uncertainty category			
Statistics and backgrou	und determ	ination	
Stat. + bkg.	0.009	0.006	
Simulation stats.	0.005	0.003	
Detector modelling			
JES	0.004	0.002	
JER	0.004	0.002	
<i>b</i> -tagging	0.001	0.001	
JVF	0.001	0.001	
Jet reconstruction	< 0.001	< 0.001	
Lepton efficiency	0.002	0.001	
Pile-up	< 0.001	< 0.001	
Signal modelling			
Top quark mass	0.003	0.004	
Radiation and scales	0.005	0.004	
Simul. model choice	0.006	0.005	
Top quark $p_{\rm T}$	0.001	0.002	
PDF	0.001	0.001	
Single top method	0.001	< 0.001	
Total uncertainty	0.014	0.011	

 $F_0 = 0.693 \pm 0.009 \text{ (stat+bkg)} \pm 0.011 \text{ (syst)}$

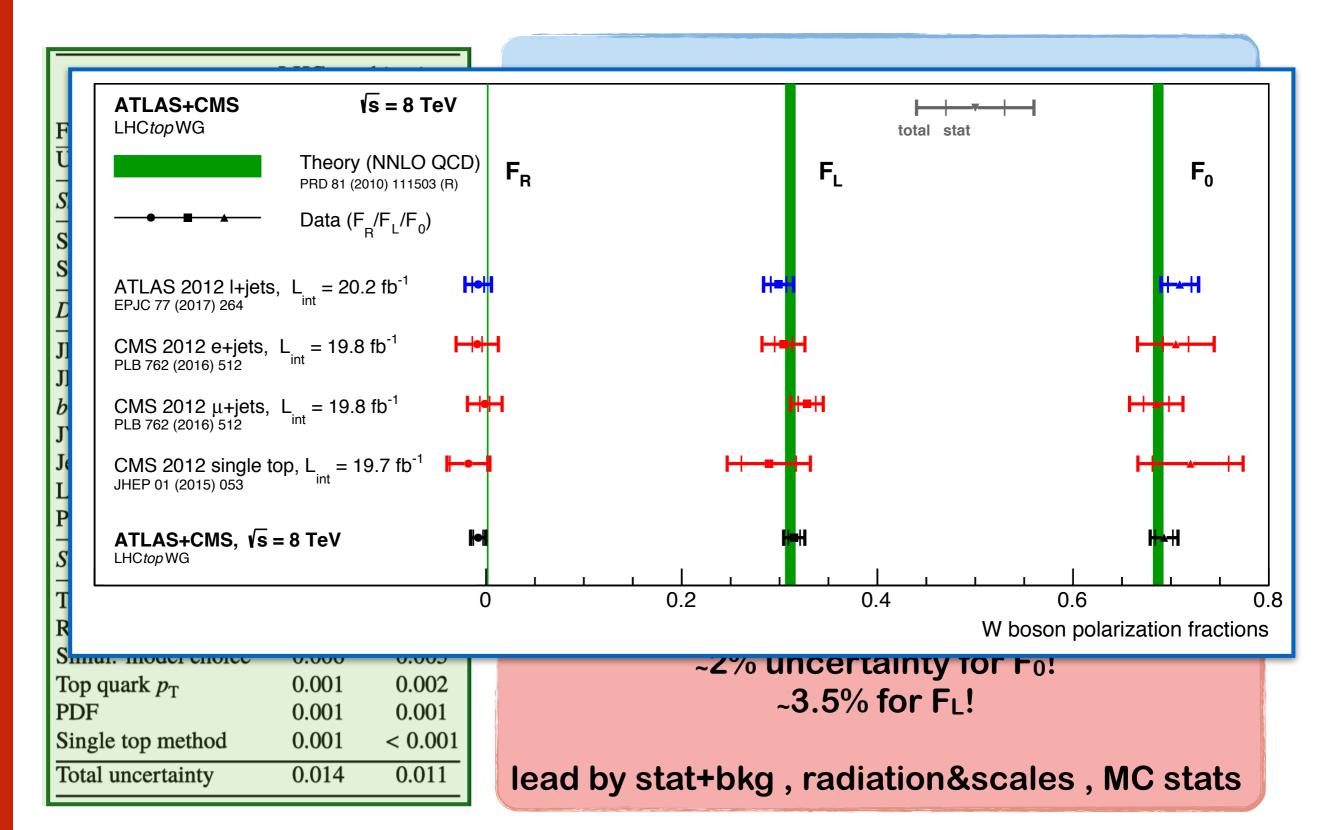
F_L= 0.315 ± 0.006 (stat+bkg) ± 0.009 (syst)

Correlation: -0.85

from unitarity:

F_R= -0.008 ± 0.005 (stat+bkg) ± 0.006 (syst) upper limit: F_R < 0.007 @ 95% CL

 χ^2 =4.3 (6 DoF), probability = 64%


~2% uncertainty for $F_0!$ ~3.5% for $F_L!$

lead by stat+bkg , radiation&scales , MC stats

Results

The Best Linear Unbiased Estimate (**BLUE**) method is used for the combination

Stability checks

Testing the **plhc** (**Fi**,**Fi**) assumption on **JES** uncertainty:

- Default correlation: **0.2**
- Scan: interval of [0.1, 0.4] in step of 0.1
 - \Rightarrow The helicity fraction values and uncertainties remained unchanged

 $\Rightarrow \chi^2$ of the fit, probability and total correlation found to be stable with relative shift < 0.5%

Stability checks

Testing the **p_Hc** (**F**_i,**F**_i) assumption on **JES** uncertainty:

- Default correlation: 0.2
- Scan: interval of [0.1, 0.4] in step of 0.1
- ⇒ The helicity fraction values and uncertainties remained unchanged

 $\Rightarrow \chi^2$ of the fit, probability and total correlation found to be stable with relative shift < 0.5%

Testing the *p*_{LHC}(F_i,F_i) and *p*_{CMS}, I+jets/st</sub>(Fi,Fi) assumption on radiation and scales uncertainty:

- Default correlation: 0.5 and 1.0 respectively
- Simultaneous Scan: intervals of [0, 0.5] and [0.6,1.0] in step of 0.1, respectively
 - \Rightarrow the helicity fraction values and uncertainties remained unchanged
 - ⇒ small variations, below the percent level are observed for the total correlation and fit probability

Stability checks

Testing the ρ_{LHC} (F_i,F_i) assumption on JES uncertainty:

- Default correlation: 0.2
- Scan: interval of [0.1, 0.4] in step of 0.1
- ⇒ The helicity fraction values and uncertainties remained unchanged

 $\Rightarrow \chi^2$ of the fit, probability and total correlation found to be stable with relative shift < 0.5%

Testing the plhc(Fi,Fi) and pcms, I+jets/st(Fi,Fi) assumption on radiation and scales uncertainty:

- Default correlation: 0.5 and 1.0 respectively
- Simultaneous Scan: intervals of [0, 0.5] and [0.6,1.0] in step of 0.1, respectively
- ⇒ the helicity fraction values and uncertainties remained unchanged

⇒ small variations, below the percent level are observed for the total correlation and fit probability

Testing the **JES vs. radiation and scales** simultaneously:

- Default correlation: 0.2 and 0.5 respectively
- Scan: grid of 5x5 in step of 0.1
- \Rightarrow stable combination with maximum relative shifts of ~ 2% for χ^2 and probability

⇒ negligible variations in the combined fractions and uncertainties

Stability checks - continued

Testing the ρcms, e/mu+jets (Fi,Fi) and ρcms, I+jets, st (Fi,Fi) assumption statistical+background uncertainty:

- Default correlation: 0
- Scan: interval of [0, 0.6] in step of 0.1
- \Rightarrow The helicity fraction values are varied by a maximum of 1.3%
- \Rightarrow for correlation value of 0.7, the fit probability decreases to 28%. For correlation values > 0.7,

the fit does not converge

Stability checks - continued

Testing the ρcms, e/mu+jets (Fi,Fi) and ρcms, I+jets, st (Fi,Fi) assumption statistical+background uncertainty:

- Default correlation: 0
- Scan: interval of [0, 0.6] in step of 0.1
 - \Rightarrow The helicity fraction values are varied by a maximum of 1.3%

 \Rightarrow for correlation value of 0.7, the fit probability decreases to 28%. For correlation values > 0.7,

the fit does not converge

5

Using the **pre-combined CMS (I+jets)** instead of **CMS (e+jets)**+ **CMS (mu+jets) as input** ⇒ identical results for helicity fractions / total correlation differs by ~1.5%

 \Rightarrow combination weights are very close to the sum of the weights of the combination using

individual inputs

Stability checks - continued

Testing the ρcms, e/mu+jets (Fi,Fi) and ρcms, I+jets, st (Fi,Fi) assumption statistical+background uncertainty:

- Default correlation: 0
- Scan: interval of [0, 0.6] in step of 0.1
- \Rightarrow The helicity fraction values are varied by a maximum of 1.3%

 \Rightarrow for correlation value of 0.7, the fit probability decreases to 28%. For correlation values > 0.7,

the fit does not converge

5

Using the **pre-combined CMS (I+jets)** instead of **CMS (e+jets)**+ **CMS (mu+jets) as input** ⇒ identical results for helicity fractions / total correlation differs by ~1.5%

 \Rightarrow combination weights are very close to the sum of the weights of the combination using

individual inputs

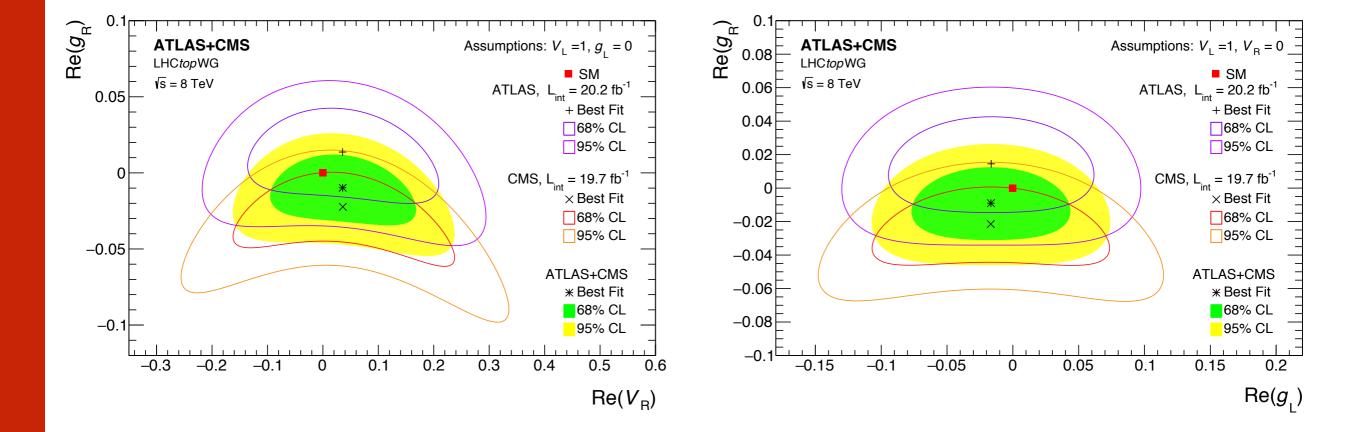
In conclusion:

- Results are robust against variations of the poorly known/ unknown input correlations
- The correlations are varied over a large range
- In all cases, the observed deviation from the nominal results are well covered by the uncertainties in the combined result.

1D limits on the anomalous couplings

- Using **EFTFitter tool**, (**1D**) limits are set on the **real part** of the anomalous couplings as:
 - Each limit obtained by fixing other 3 to SM value
 - EFTFitter inputs are BLUE combination result (F₀, Δ F₀, F_L, Δ F_L, ρ)

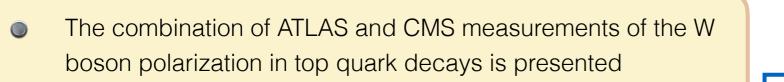
	95 % CL interval						
Coupling	ATLAS	CMS	LHC combination				
V _R	[-0.17, 0.25]	[-0.12, 0.16]	[-0.11, 0.16]				
$g_{ m L}$	[-0.11, 0.08]	[-0.09, 0.06]	[-0.08, 0.05]				
$g_{\rm R}$	[-0.03, 0.06]	[-0.06, 0.01]	[-0.04, 0.02]				


Similarly, limits are set on the corresponding Wilson coefficients Nucl.Phys.B812:181-204,2009

 $\mathcal{L}^{\text{eff}} = \mathcal{L}^{\text{SM}} + \Sigma \frac{C_x}{\Lambda^2} O_x + O\left(\frac{1}{\Lambda^3}\right) + \dots \qquad \qquad \delta V_L = C_{\phi q}^{(3,33)*} \frac{v^2}{\Lambda^2}, \qquad \qquad \delta g_L = \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2}, \qquad \qquad \delta g_R = \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2}.$

	95 % CL interval						
Coefficient	ATLAS	CMS	LHC combination				
$C^*_{\phi\phi}$	[-5.64, 7.68]	[-3.84, 4.92]	[-3.48, 5.16]				
$C_{ m bW}^{*}$	[-1.30, 0.96]	[-1.06, 0.72]	[-0.96, 0.67]				
$C_{\rm tW}$	[-0.34, 0.67]	[-0.62, 0.19]	[-0.48, 0.29]				

2D Limits on the anomalous couplings



The other 2 couplings are fixed to SM predictions

Summary & conclusion

- Precision of ~ 2% in F₀, ~3.5% in F_L is achieved
- Improvement (*) w.r.t previous most precise individual measurements:
 - ♦ ~25% in F₀
- New couplings exclusion: tightening possibilities of new physics
- W boson helicity fractions:

 $F_0 = 0.693 \pm 0.009(\text{stat+bkg}) \pm 0.011(\text{syst})$ $F_L = 0.315 \pm 0.006(\text{stat+bkg}) \pm 0.009(\text{syst})$ $F_R = -0.008 \pm 0.005(\text{stat+bkg}) \pm 0.006(\text{syst})$

- Lead by stat+bkg, radiation&scales, MC stats
- Result is compatible with Standard Model
- Constraints derived on the corresponding Wilson coefficients

	arXiv:2005.03799v1 [hep-ex]
	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
	CMS TOP-19-004
	ATLAS-TOPQ-2018-002
I INTAY ENEN	Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at $\sqrt{s} = 8$ TeV The CMS and ATLAS Collaborations [*]
	Abstract
arviv.cuuc.uov.ov/2241 [IIEp-Ex] / Miay 2020	The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS Collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass en- ergy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb ⁻¹ for each experiment. The measurements used events containing one lepton and having differ- ent jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F_0), left-handed (F_L), or right-handed (F_R) polarizations. The re- sulting combined measurements of the polarization fractions are $F_0 = 0.693 \pm 0.014$ and $F_L = 0.315 \pm 0.011$. The fraction F_R is calculated from the unitarity constraint to be $F_R = -0.008 \pm 0.007$. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynam- ics and represent an improvement in precision of 25 (29)% for F_0 (F_L) with respect to the most precise single measurement. A limit on anomalous right-handed vector (V_R), and left- and right-handed tensor (g_L, g_R) tWb couplings is set while fixing all others to their standard model values. The allowed regions are [-0.11, 0.16] for V_R , [-0.08, 0.05] for g_L , and [-0.04, 0.02] for g_R , at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived.
	Submitted to the Journal of High Energy Physics
(*)	Improvement = $(1 - \frac{\text{Rel. Unc. of Combination}}{\text{Rel. Unc. of most precise meas.}}) \times 100$

Backup slides

Re-grouped uncertainties

	ATLAS <i>l</i> +jets						
Measured value	<i>F</i> ₀ 0.709	F _L 0.299	$\rho_{\mathrm{ATLAS}}^{\mathrm{l+jets}}(F_0,F_{\mathrm{L}})$				
Uncertainty Category							
Statistics and background determination							
Stat. + bkg.	0.012	0.008	-1.00				
Simulation stats.	0.009	0.006	-1.00				
Detector modelling							
JES	0.005	0.003	-0.94				
JER	0.006	0.003	-0.92				
<i>b</i> -tagging	0.002	0.001	-0.84				
JVF	0.003	0.002	-0.99				
Jet reconstruction	< 0.001	< 0.001	-1.00				
Lepton efficiency	0.004	0.002	-0.99				
Pile-up	<i>n.a</i> .	<i>n.a.</i>	<i>n.a.</i>				
Signal modelling							
Top quark mass	0.002	0.007	-1.00				
Radiation and scales	0.003	0.006	-0.91				
Simul. model choice	0.003	0.004	0.99				
Top quark $p_{\rm T}$	<i>n.a</i> .	<i>n.a</i> .	<i>n.a.</i>				
PDF	0.003	0.004	-1.00				
Single top method	<i>n.a</i> .	<i>n.a</i> .	n.a.				
Total uncertainties							
Systematic uncertainty	0.014	0.013	-0.82				
Total uncertainty	0.019	0.015	-0.82				

Re-grouped uncertainties

	CMS e+jets			CMS µ+j	ets	
Measured value	<i>F</i> ₀ 0.705	F _L 0.304	$\rho_{\rm CMS}^{\rm e+jets}(F_0,F_{\rm L})$	$F_0 \\ 0.685$	F _L 0.328	$\rho_{\rm CMS}^{\mu+{\rm jets}}(F_0,F_{\rm L})$
Uncertainty Category						
Statistics and backgroun	nd determ	ination				
Stat. + bkg. Simulation stats.	0.028 0.002	0.011 0.001	-0.87 -0.95	0.016 0.002	0.010 0.001	-0.88 -0.96
Detector modelling						
JES	0.004	0.003	-1.00	0.005	0.003	-1.00
JER <i>b</i> -tagging	$\begin{array}{c} 0.001 \\ 0.001 \end{array}$	0.002 < 0.001	-1.00 -1.00	0.004 0.001	0.003 < 0.001	-1.00 -1.00
JVF	n.a.	<i>n.a</i> .	<i>n.a.</i>	<i>n.a.</i>	<i>n.a.</i>	n.a.
Jet reconstruction Lepton efficiency Pile-up	<i>n.a.</i> 0.001 0.001	<i>n.a.</i> 0.002 0.001	n.a. -1.00 -1.00	<i>n.a.</i> 0.001 < 0.001	<i>n.a.</i> 0.001 < 0.001	n.a. -1.00 -1.00
Signal modelling						
Top quark mass	0.012	0.008	-0.99	0.009	0.006	-1.00
Radiation and scales	0.007	0.005	-1.00	0.014	0.006	-0.83
Simul. model choice	0.015	0.010	-0.87	0.008	0.004	0.20
Top quark $p_{\rm T}$	0.011	0.010	-1.00	< 0.001	0.001	-1.00
PDF	0.004	0.001	-0.92	0.002	0.001	-0.15
Single top method	<i>n.a.</i>	<i>n.a</i> .	n.a.	<i>n.a.</i>	<i>n.a</i> .	<i>n.a.</i>
Total uncertainties						
Systematic uncertainty	0.024	0.018	-0.93	0.020	0.010	-0.71
Total uncertainty	0.037	0.021	-0.87	0.025	0.014	-0.80

Re-grouped uncertainties

	CMS (single top)						
Measured value	F_0 0.720	F _L 0.298	$\rho_{\rm CMS}^{\rm st}(F_0,F_{\rm L})$				
Uncertainty Category							
Statistics and background determination							
Stat. + bkg.	0.041	0.031	-0.90				
Simulation stats.	0.002	0.004	-0.96				
Detector modelling							
JES	0.004	0.004	-1.00				
JER	0.001	0.001	-1.00				
<i>b</i> -tagging	0.006	0.006	-1.00				
JVF	n.a.	n.a.	<i>n.a.</i>				
Jet reconstruction	n.a.	n.a.	<i>n.a.</i>				
Lepton efficiency	< 0.001	< 0.001	0.00				
Pile-up	0.003	0.003	-1.00				
Signal modelling							
Top quark mass	0.005	0.007	-1.00				
Radiation and scales	0.023	0.019	-1.00				
Simul. model choice	0.002	0.003	-1.00				
Top quark $p_{\rm T}$	n.a.	n.a.	<i>n.a</i> .				
PDF	0.004	0.004	-0.97				
Single top method	0.012	0.015	-1.00				
Total uncertainties							
Systematic uncertainty	0.035	0.029	-0.96				
Total uncertainty	0.054	0.043	-0.92				