#### ATLAS Top Modeling: NLO Matching and PS Uncertainties

#### Nedaa-Alexandra Asbah On behalf of the ATLAS collaboration LHC Top WG meeting - 14.05.2020





1

#### Motivation

- A summary of the improvements of top-quark pair modelling and uncertainties
  - Comparisons of various samples (new & old) with data
- A look at systematic uncertainty modeling
  - New approaches to evaluating the matching uncertainty
    - Focus on targeting the correct source of the uncertainty
    - Comparisons between different approaches
  - Ways to estimate the Parton Shower uncertainty
  - Comparisons with multi-leg generators (Sherpa 2.2.8)

#### Phase-space For Studies

- Studies are done measuring the differential cross section in all channels
- All distributions are at particle level
- Comparisons are done using published unfolded tt<sup>-</sup> data at  $\sqrt{s} = 13$  TeV
  - o <u>dilepton</u>, <u>all-hadronic</u>, <u>l+jets</u>

| dilepton                                                                                                      | l+jets                                                                                                                                                                     | all-hadronic                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>1 electron and 1 muon<br/>with p<sub>T</sub> &gt; 25 GeV</li> <li>No requirements on jets</li> </ul> | <ul> <li>1 lepton (electron or muon) with p<sub>T</sub> &gt; 25 GeV</li> <li>≥ 4 jets; p<sub>T</sub> &gt; 25 GeV</li> <li>≥ 2 b-jets; p<sub>T</sub> &gt; 25 GeV</li> </ul> | <ul> <li>0 leptons</li> <li>≥ 6 jets with p<sub>T</sub> &gt; 55 GeV</li> <li>== 2 b-jets; p<sub>T</sub> &gt; 25 GeV</li> </ul> |

## MC Settings

- Nominal generator uses:
  - (PWG): Powheg-Box v2 with NNPDF3.0NLO PDF set and the hdamp parameter set to 1.5\*m<sub>top</sub>
  - (PY): Pythia 8.230 using the A14 tune and the NNPDF2.3LO PDF set (MEC == ON & grecoil == OFF)
- Alternative generators use:
  - o (MC@NLO): MadGraph5\_aMC@NLO 2.2.1
  - (PY\*): Pythia 8.230 using the A14 tune and the NNPDF2.3LO PDF set (MEC == OFF & grecoil == ON)
    - In I+jets and dilepton samples: (MEC == OFF & grecoil == OFF)
  - (H7.1.3): Herwig 7.1.3 with the H7.1-Default tune
  - (H7.0.4): Herwig 7.0.4 with the H7UE MMHT2014 LO
  - Sherpa 2.2.8
- All generators normalized to the same NNLO XS

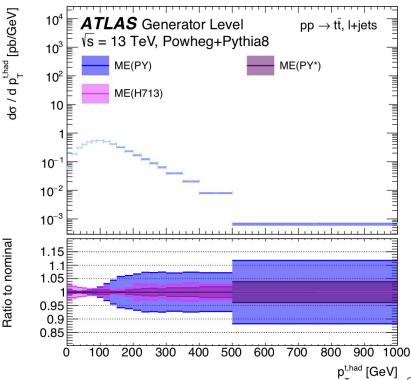
## Matching Uncertainty

- **Two-point systematic** approach in ATLAS compares two different matrix element generators
  - Powheg+Pythia8 vs aMC@NLO+Pythia8\*
  - Is this uncertainty covering what we expect?
- Studies suggest directly comparing the nominal Powheg+Pythia8 and aMC@NLO+Pythia8\* leads to an uncertainty that convolutes two effects:
  - The NLO matching algorithm (what we want to probe)
  - The matrix element corrections (MEC) applied to the top decay
- The subtraction scheme applied in aMC@NLO does not consider MEC, but it is recommended to shower Powheg events including MECs

#### **Three Generator Setups Considered**

- Three different MC setups to assess the NLO matching uncertainty:
  - Powheg+Pythia8 vs aMC@NLO+Pythia8\*
    - Requires a difference in Pythia MEC parameters which causes a convolution of two sources of uncertainties (both NLO matching and MEC)
  - Powheg+Herwig7.1.3 vs aMC@NLO+Herwig7.1.3
    - No need to adjust any Herwig parameters, but Herwig needs to know if the events were produced with Powheg or aMC@NLO
      - Are there different internal settings used in both cases?
  - Powheg+Pythia8\* vs aMC@NLO+Pythia8\*
    - The \* refers to the settings employed when showering events generated by aMC@NLO (turning off the MEC and using the global recoil settings)
- Which approach is the most "correct" to use?

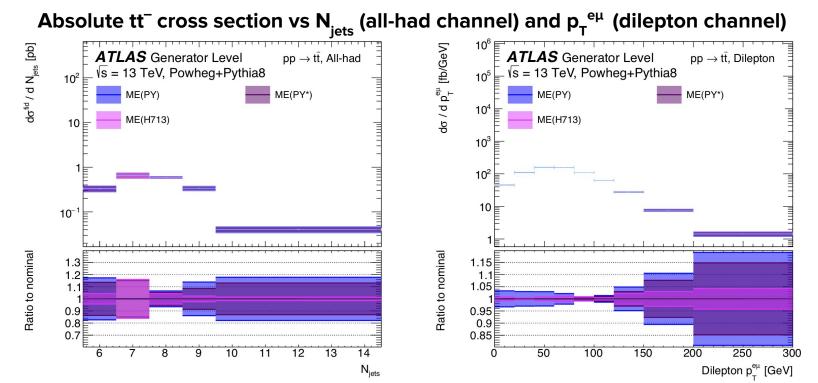
## ME Generator Shorthand Names


- The matching uncertainties obtained from comparing PWG+H713 vs MC@NLO+H713 or PWG+PY\* vs MC@NLO+PY\* are expected to reflect the intended systematic
  - The setting for the parton shower is exactly the same
  - ME(H173) and ME(PY\*) are expected to give comparable uncertainty

| Name of the uncertainty | Comments                          |
|-------------------------|-----------------------------------|
| ME(PY)                  | Old sample (PWG+PY vs MC@NLO+PY*) |
| ME(H713)                | PWG+H713 vs MC@NLO+H713           |
| ME(PY*)                 | PWG+PY* vs MC@NLO+PY*             |

## Differences on ME Uncertainty

- 3 matching uncertainty approaches shown for the hadronic top p<sub>T</sub> in I+jets channel
- ME(PY\*) and ME(H713) agree fairly well
  - Supports assumption that showering and hard scatter factorize
- ME(PY) gives the largest uncertainty at high p<sub>T</sub>
- Agreement is more varied in all-had and dilepton channels (see next slide)


# Absolute tt<sup>-</sup> cross section vs hadronic top $p_{T}$



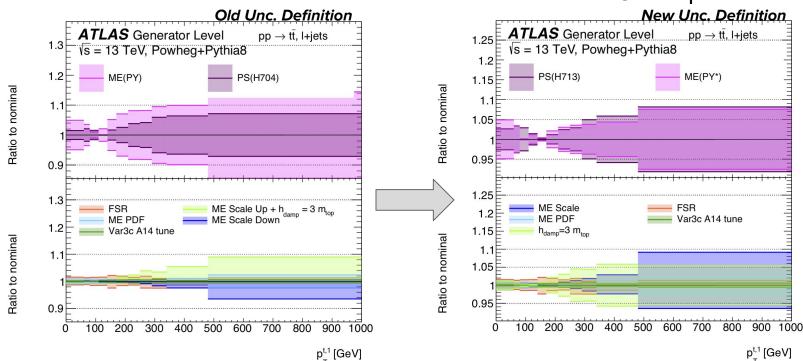
8

#### Differences on ME uncertainty calculation

- In all channels, the band representing **ME(PY)** is the largest
- Large uncertainty in the N<sub>jets</sub> distribution for ME(H713) for N<sub>jets</sub> = 7 (at which the matching happens "qualitatively")



#### Summary of All Considered Uncertainties


|               | Old Uncertainty Prescription                                                                                                            | New Uncertainty Prescription                                                    |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Matching Unc. | aMC@NLO+Pythia8* vs PWG+Pythia8                                                                                                         | aMC@NLO+Pythia8* vs PWG+Pythia8*                                                |
| Parton shower | PWG+H704 vs PWG+Pythia8                                                                                                                 | PWG+H713 vs PWG+Pythia8                                                         |
| ISR           | Up: hdamp=3*m <sub>top</sub> , $\mu$ F=0.5, $\mu$ R=0.5 , & Var3c up variation<br>Down: $\mu$ F=2.0, $\mu$ R=2.0 & Var3c down variation | Seven points envelop (µF,µR)                                                    |
| Hdamp         | -                                                                                                                                       | hdamp=3*m <sub>top</sub>                                                        |
| PDF           | PDF4LHC recommendation on PDF 261000                                                                                                    | PDF4LHC recommendation on PDF 261000                                            |
| A14 tune      | _                                                                                                                                       | Var3c Up/Down variations                                                        |
| FSR           | Pythia8 tune: isr:muRfac=1.0_fsr:muRfac=0.5 and sr:muRfac=1.0_fsr:muRfac=2.0                                                            | Pythia8 tune: isr:muRfac=1.0_fsr:muRfac=0.5<br>and sr:muRfac=1.0_fsr:muRfac=2.0 |

Components split to allow more freedom in profile likelihood fits (avoid unjustified constraints)

N.B. Var3c variation from the [A14] tune

#### Summary of the Uncertainties on PWG+PY8

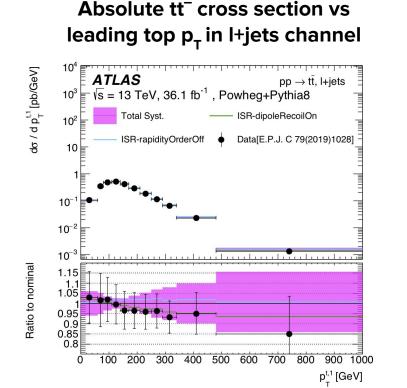
- One uncertainty band shown for each uncertainty source
- The PS(H713) uncertainty band is smaller than for PS(H704)



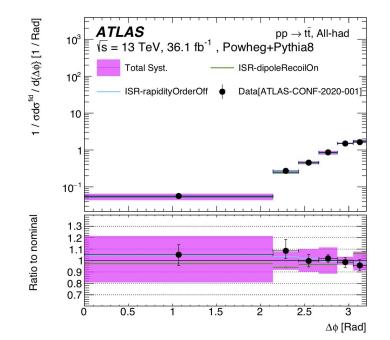
11

Ratio with respect to the nominal sample vs leading top  $p_{\tau}$ 

## Summary of the Uncertainties on PWG+PY8


- Moving away from ad-hoc 2-point theory systematics to per-event variations (internal weights)
  - Need a well defined set of nuisance parameter and variations associated to a single setup
- Given the hdamp variation (3\*m<sub>top</sub>), is an additional MC@NLO vs PWG uncertainty needed?
  - $\circ$  Should a different  $h_{damp}$  variation than  $3^*m_{top}$  be considered?
  - Or in the opposite direction w.r.t. the nominal? Is there a recommended range?
- What else can be varied internally for Powheg+Pythia8?
  - Input from the generator / theory community is well appreciated

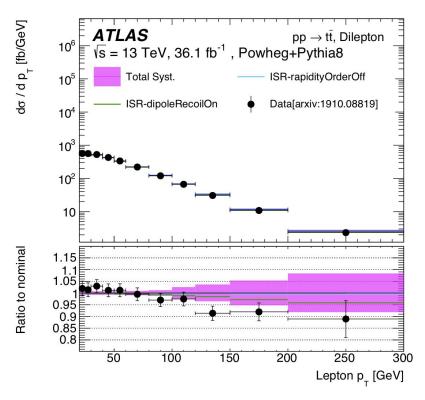
## Moving Toward Internal Variations: PWG+PY8


- The following plots show the agreement between PWG+PY8 and data in the three channels
- Syst band contains the sum in quadrature of: scale, PDF, h<sub>damp</sub>, Var3c, Parton Shower, Matching, and FSR
- Different lines for different settings in the ISR shower
  - **dipoleRecoilON**: Switch on the dipole recoils in ISR shower
  - rapidityOrderOff: Switch off the rapidity ordering of emissions in ISR shower

#### Agreement between PWG+PY8 & data

 Overall a good agreement between data and total systematics uncertainty shown in the pink band as well as with the ISR variations

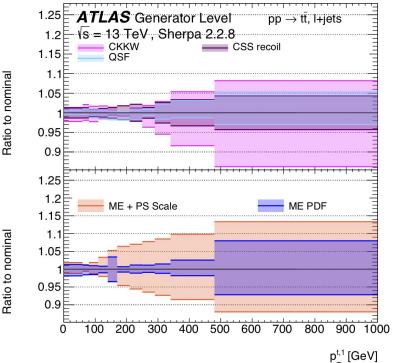



#### Normalized tt<sup>−</sup> cross section vs ΔΦ (tt<sup>−</sup>) in the all-had channel



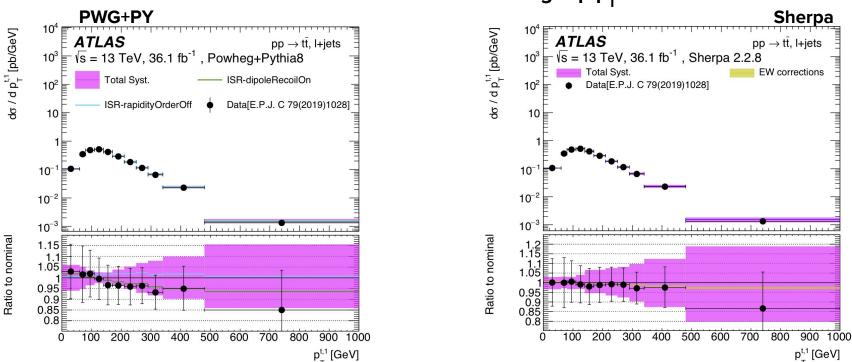
#### Agreement between PWG+PY8 & data

- The sample with RapidityOrderOff agrees with the nominal PW+PY8
- The sample with DipoleRecoilOn agrees better with data


## Absolute tt<sup>-</sup> cross section vs leading lepton $p_T$



## Alternative multi-leg generators: Sherpa


- Investigating multi-leg generators
  - Sherpa 2.2.8 sample with EW virtual corrections
  - tt<sup>-+</sup> 0,1j@NLO + 2,3,4j@LO
- Variations of the resummation scales, CKKW matching scale and the dipole recoil scheme are shown in the upper panel
- Internal variations are shown in the lower panel (renormalisation and factorisation scales in the matrix element and the parton shower (ME+PS Scale) and PDF

# Ratio with respect to nominal vs the leading top $p_{T}$



#### Agreement of PWG+PY8 / Sherpa with data

- PWG+PY8 has a larger uncertainty at low- $p_{T}$  probably due to the H7/PY8 difference
  - Uncertainties derived using one PS model are probably underestimated (smaller band for Sherpa)
- At high-p<sub>T</sub> PWG has a slightly smaller uncertainty maybe because it is "tuned" it to data!



#### Absolute tt<sup>-</sup> cross section vs leading top $p_{\tau}$

<sup>17</sup> 

- Showed comparisons of the nominal MC generator setups and the corresponding systematic uncertainty model used in ATLAS
- The previous evaluation of the matching uncertainty convoluted at least two different effects:
  - The NLO matching algorithm which we want to probe
  - The matrix element corrections (MEC) applied to the top-quark decay
- Investigated other ways to probe the matching uncertainty
  - Does the new approach cover the intended uncertainty?
  - What can be done further to improve this?

#### Conclusions

- Presented comparison between two versions of Herwig7 for the parton shower uncertainty
  - Overall the difference between PWG+H713 and PWG+PY8 PS(H713) is smaller than the difference between PWG+H704 and PWG+PY8 PS(H704
- Avoiding ad-hoc 2-point systematics where possible in favor of internal weights
  - Need a well defined set of variations associated to a single setup
- hdamp variation:
  - Should we consider a different hdamp variation, different from 3\*m<sub>ton</sub>?
- Looked at alternative setups using Sherpa 2.2.8

