

Talk Overview

- * A brief outline of the ATLAS Computing Model
 - □ How does data flow (in principle)
 - □ How is ATLAS doing its scientific work?
- *** Use Cases, Recent Examples & Network Implications**
- Summary and Conclusions

NOTE: I will be presenting <u>my perspective</u> of ATLAS activities and use cases, which is US-centric!

ATLAS Tiered Computing Model

- * Within this model the each Tier has a set of responsibilities:
 - □ Tier-0 First pass reconstruction, archive ALL data
 - □ Tier-1 Data reprocessing and archiving, User/Group analysis
 - □ Tier-2 Simulation and User analysis
- * Implicit in this model and central to its success are:
 - □ High-performance, ubiquitous and robust networks
 - ☐ Grid middleware to securely **find**, **prioritize** and **manage** resources
- * Without either of these capabilities the model risks melting down or failing to deliver the required capabilities.
- * Efforts to date have (necessarily) focused on building the most basic capabilities and ensuring they can work.

ATLAS Physicist's Requirements

- ATLAS physicists need the software and physical infrastructure required to:
 - Calibrate and align detector subsystems to produce well understood data
 - Realistically simulate the ATLAS detector and its underlying physics
 - Provide timely access to ATLAS data globally
 - Accurately reconstruct data to allow new physics discoveries
 - Define, manage, search and analyze data-sets of interest
- Networking plays a fundamental role for all of these activities

ATLAS

Recent ATLAS Data Movement Results

- Since the LHC restarted in March we have gotten a quick look at how the DDM infrastructure has worked (next slide)
- * Summary is "Very well"...but there are some details which are useful to cover and some issues we need to address.
- Generally there is a large amount of data to move and not all of it is equally interesting for physicists.
- * After data reprocessing, many physicists want immediate access to certain datasets and submit a **large** number of grid jobs targeted at this new data.
- Remember that ATLAS generally tries to send jobs to the data...so, as long as the data exists where the CPU slots exist, we are good...if not...(I will cover this in a few slides)

Recent ATLAS Data Distribution

Use Case: ATLAS Datasets to Physicists

- In ATLAS we have a goal of getting datasets to Tier-2 centers quickly (~ 4 hours).
- This is especially important for "interesting" or "hot" datasets that generate a large number of user/group jobs requiring these datasets as inputs (will discuss later)
- The ATLAS "cloud" based distribution model previously described makes timely access to 'hot' new datasets challenging:
 - Get to destination cloud: transfer from source to local Tier-1
 - Next: transfer from local Tier-1 to destination site in cloud
 - ⇒ Increases both I/O and latency vs direct src-dst move
 - ⇒ However it is better controlled and easier to debug problems

US Tier-2 Transfer Capabilities

- Most USATLAS Tier-2 centers have 10GE connectivity (SWT2-UTA (last 1GE site) upgraded by September 2010)
- Our baseline assumes Tier-2's should be able to ingest data at >400MB/sec. Bursts up to line capacity (1.25 GB/s).
- Recently data reprocessing distributions have shown Tier-2s capable of >800 MB/sec continuously (some ~1.25 GB/s)
- * Assuming 800 MB/sec, we can move 1 TB datasets in about 21 minutes or 10 TB datasets in 3 ½ hours
- Note a dataset larger than 11.52 TB has a total transfer time
 4 hours...in other words, there is a lower limit on dataset
 latency determined by size & achievable bandwidth
- * For reference 10 Gbps data transfer => 4.5 TB/hour

ATLAS Data Transfers and Latency

- Of course the previous slide implicitly assumed we were ONLY moving the "important" dataset and had the "input" dataset already at the Tier-1 in our cloud, neither of which is typically true when new interesting datasets are first ready.
- In practice, Tier-2s usually are busy either receiving or sending data (MC results, calibration/conditions data, user jobs, etc)...there is usually competing activity.
- Data from outside the cloud requires the Tier-1 to transfer the dataset first (but it can "overlap" the transfer). Note I/O is doubled: write-then-read, which impacts throughput
- * Therefore meeting a 4 hour latency can be difficult...

BNL Tier-1 Cloud Data Transfers

Shown are the BNL Tier-1 cloud data transfers for April till early June. Many days average above 10 Gb/s (1250 MB/s). (Different colors denote destination sites)

USATLAS Tier-2 Data Transfers

The US Tier-2 sites are currently capable of using ~1.5x10 Gb/s of network bandwidth for data distribution.

Once the SWT2 is upgraded to a 10GE path we anticipate regularly filling 2x10GE for Tier-2 data distributions

Challenges with Dataset Availability

- During/after the April reprocessing in early March we had a large number of users submit jobs needing these datasets.
- The BNL Tier-1 relatively quickly acquired the datasets and begin redistributing them to the US Tier-2 sites
- * However a significant amount of other Monte-Carlo data was also being transferred and reprocessed datasets were arriving at Tier-2's much too slowly
- ** Because of job-to-data matchmaking, BNL quickly had ALL users jobs queued up (~100,000)
- *** Tier-2's had empty analysis slots waiting for jobs**
- The problem was identified and a series of manual "fixes" were applied to allow ONLY reprocessed data to transfer to the Tier-2s to resolve the backlog. Not a long-term solution

Implications for the Future

- * The transfer capabilities of the Tier-1 and Tier-2s are very good. Some Tier-2 sites can fill a 10GE link on their own.
- When large amounts of data are being distributed, the ATLAS DDM system performs well in ensuring all data is transferred...eventually.
- * However, in most cases datasets are NOT equally important and have different urgencies (in terms of being ready for users to access). This importance changes in time.
- * We need the capability of expressing relative "importance" by dataset AND have an infrastructure that can allocate available resources accordingly.
- Interaction of network services and the DDM system will be required to deliver this capability

Additional Implications

- The USATLAS Tier-2 centers are large and planned to grow to meet there MOU requirements.
- Network needs scale with processing power and local storage. Currently a typical US site has ~1500 processors and 1 Petabyte of storage and this will grow.
- * The current ATLAS cloud model restricting transfers between clouds to the Tier-1's needs re-evaluation.
 - □ Original intent was to provide well defined and managed inter-cloud links to facilitate debugging and manage "load"
 - □ As Tier-2s become more powerful we need to look at the cost in latency and additional I/O impact for the store and forward model.
 - □ Data transfer decisions should be based on resources capabilities
- * Changes would have implications for transatlantic networks

Need for Pervasive Monitoring

- * Many of you are probably aware that all problems of unknown origin are "network" problems
- It is easy to attribute such problems to the "network" because of its black-box nature and its potentially large set of administrative domains for a typical end-to-end path.
- In practice problems in the "network" or more likely to be local problems at the source or destination...but how can we know?
- * Having "standardized" monitoring that can identify current and past performance as well as the capability of isolating the location of performance or connectivity issues is critical for managing wide-area science.

Network Monitoring: perfSONAR

- There is a significant, coordinated effort underway to instrument the network in a standardized way. This effort, call perfSONAR, is jointly supported by DANTE, Esnet, GEANT2, Internet2 and numerous University groups.
- Since the network is so fundamental to our work on the ATLAS, we targeted implementation of a perfSONAR instance at all our primary facilities.
- perfSONAR's primary purpose is to aid in network diagnosis by quickly allowing users to isolate the location of problems. In addition it can provide a standard measurement of various network performance related metrics over time.
- * Has already proven very useful in USATLAS!

Example: AGLT2's perfSONAR

User Tools

Services On This Node
Global Set Of Services
Java OWAMP Client
Reverse Traceroute
Reverse Ping
PingER Web GUI

Service Graphs

Throughput
One-Way Latency
Ping Latency
SNMP Utilization
Cacti Graphs

Toolkit Administration

Administrative Information
External BWCTL Limits
External OWAMP Limits
Enabled Services
NTP

pS-Performance Node For AGLT2-MSU In East Lansing, MI, USA

Services Offered Bandwidth Test Controller (BWCTL)[1] Running tcp://psmsu02.aglt2.org:4823 Lookup Service[1] Running http://psmsu02.aglt2.org:8095/perfSONAR_PS/services/hLS Network Diagnostic Tester (NDT)[1] Running tcp://psmsu02.aglt2.org:3001 http://psmsu02.aglt2.org:7123 Network Path and Application Diagnosis (NPAD)[1] Running tcp://psmsu02.aglt2.org:8100 http://psmsu02.aglt2.org:8200 One-Way Ping Service (OWAMP)[1] Disabled tcp://psmsu02.aglt2.org:861 perfSONAR-BUOY Regular Testing (Throughput)[1] Running perfSONAR-BUOY Measurement Archive[1] Running http://psmsu02.aglt2.org:8085/perfSONAR_PS/services/pSB perfSONAR-BUOY Regular Testing (One-Way Latency)[1] Disabled PingER Measurement Archive and Regular Tester[1] Disabled

http://psmsu02.aglt2.org:8075/perfSONAR_PS/services/pinger/ma

http://psmsu02.aglt2.org:8065/perfSONAR_PS/services/snmpMA

SNMP Measurement Archive[1]

Deployed at Tier-1 and all Tier-2s in the USATLAS

Provides throughput and latency measurements

Used for problem isolation and performance monitoring

Not Running

perfSONAR Example Information

Throughput Tests

	Active Data Sets							
First Host	First Address	Second Host	Second Address	Protocol	Duration	Window Size	Bandwidth Limit	Bi-Directio
atlas-npt2.bu.edu	192.5.207.252	psmsu02.aglt2.org	192.41.231.20	TCP	30			Yes
i2perf.hep.upenn.edu	128.91.45.144	psmsu02.aglt2.org	192.41.231.20	TCP	30			Yes
iut2-net1.iu.edu	149.165.225.223	psmsu02.aglt2.org	192.41.231.20	TCP	30			No
lhcmon.bnl.gov	192.12.15.23	psmsu02.aglt2.org	192.41.231.20	TCP	30			Yes
psmsu02.aglt2.org	192.41.231.20	psum02.aglt2.org	192.41.230.20	TCP	30			Yes

Joint Techs Winter 2010 2/3/2010 19

Status of perfSONAR for USATLAS

- * Fully deployed at all Tier-2 (and BNL Tier-1) "sites" (most Tier-2s are comprised of more than one physical site)
- * Original hardware specified in 2008. Inexpensive system (1U) from KOI Computing. Two boxes deployed: latency and bandwidth measurement roles. Has been problematic:
 - Boxes have had some driver issues and exposed perfSONAR bugs
 - Systems seem underpowered at the scale of use for USATLAS
- Primary missing component: Automated monitoring of results with ALERTING. Ongoing project for USATLAS
- New hardware purchased: Dell R4101U, Intel E5620, 12GB, 10GE Myricom, 2x1GE. Possible 2x1U replacement

ATLAS Networking Needs

- * There isn't anything unique about ATLAS networking needs compared with LHC networking needs. ATLAS requires:
 - □ **Robust networks**, end-to-end. Extended loss of connectivity can be extremely disruptive.
 - □ **Sufficient bandwidth** to support our physics needs. This varies with time and source/destination but currently is:
 - ≈ 20-30 Gb/s for the Tier-1
 - # 10 Gb/s for each Tier-2 (Tier-1=>Tier-2s at 20Gb/s)
 - ** These values support the **current** peak usage...this will grow as processors and storage at sites ramp-up (factor of ~2 by 2013?)
 - □ Ability to **prioritize** traffic to match our needs. High-demand datasets need higher priority to meet user needs/expectations.
 - Monitoring to identify and isolate problems and verify normal operation (baseline setting)

Status and Conclusions

- * ATLAS transatlantic networking has worked well as the LHC has started physics operations.
- Current ATLAS cloud model certainly needs re-examination. A change to a more grid-like data access model may be facilitated by better, more pervasive monitoring, e.g., perfSONAR.
- * Having prioritization mechanism's for data distribution is needed. This may involve network services to support this capability.
- Depending upon how ATLAS DDM evolves there may be more transatlantic traffic (burst-wise) because of Tier-2 related data transfers. The Tier-2s in the US are already large and are planned to grow significantly in both storage and processors.
- Robust, well monitored transatlantic networks are required for US Physicists to be able to effectively participate in ATLAS

?Questions?