Argon dual-phase TPCs

Roberto Santorelli

CIEMAT – Madrid

Topical workshop on New Horizons in TPCs – Santiago 06/Oct/2020

Outline

- Dual-phase Ar TPCs: recent achievements
- Technological breakthroughs
- The global Ar community
- Prospects
- Conclusions

LAr/GAr TPCs

New sensors...

Cryostat

- Active mass 12.096 kton
- Drift 12 m
- Nb. of channels 153600
- 80 CRP units
- 180 PMTs

Space charge

- Ions have drift velocity which is five/six orders of magnitude lower than v_e
- Without taking into account the liquid motion:

$$\mu_i \sim 2 \cdot 10^{-4} cm^2 V^{-1} s^{-1}$$
 (T.H. Dey , T.J. Lewis , J. Phys. D: Appl. Phys. 1 (8) - 1968) $\mu_i \sim 1.6 \cdot 10^{-3} cm^2 V^{-1} s^{-1}$ (M. Torti , Proceedings of the Fourth International Conference on New Frontiers in Physics - 2015)

At
$$E_d=1$$
 kV/cm, $v_i\sim 1.6\cdot 10^{-5}mm/\mu s$ to be compared to $v_e\sim 2$ mm/ μs

•
$$v_i \ll v_e \implies \rho_i \gg \rho_e$$
 Depending on drift field, ionization rate, (+liquid motion ...etc)

The electrons drift to the anode, the ions stay!

The electron drift in a positively charged volume (neutral target only when the field is off)

- ➤ Amount of ionization (event energy and rate)
- ρ_i depends on: \triangleright Total drift length
 - \triangleright Ion velocity (E_d and mobility)

Finite element analysis

COMSOL Multiphysics

Electrostatics and Transport of Diluted Species modules

 $1 \times 1 \times 1$ m3 box filled with liquid Argon, 100 kV between the top and the bottom surface.

JINST 13 (2018) no.04, C04015

F<u>ield distortion, "Secondary" recombination and volume light emiss</u>ion

 $S_{cs} \rightarrow$ transverse area (far enough) whose crossing field lines end on one ion (all the lines emerging from the ion cross that section)

$$S_{cs} = 1.2 \cdot 10^{-7} mm^2$$
 with $E_d = 1 \text{ kV/cm}$

"Uncorrelated"
Light
production

Underground case L=12 m

- Neutrino experiments using dual-phase technology have been proposed in recent years.
- This technology has been a standard for dark matter experiments for a couple of decades.

DarkSide-50

- 46.4 kg of Active LAr (150 kg of UAr)
- 38 3" Hamamatsu R11065 PMTs
- 4 m(d) sphere veto: 30 tonne boron loaded liquid scintillator (120 PMTs, eff > 99.8 %)
- 1 kt ultrapure water Cherenkov Veto (80 PMTs, eff > 99.8 %)
- Installed @ LNGS (3400 m.w.e)

High WIMP mass search

- (16 660±270) kg d exposure
- No WIMP-like event in the search box
- \rightarrow 90% CL exclusion limit

 $1.1 \times 10^{-44} \text{ cm}^2$ @ 100 GeV/c^2

 $3.8 \times 10^{-44} \text{ cm}^2$ @ 1 TeV/c^2

 $3.4 \times 10^{-43} \text{ cm}^2$ @ 10 TeV/c^2

(standard isothermal WIMP model)

Type of bkg	Estimated evts passing the cut
Surface α	0.001
Cosmogenic n	< 0.0003
Radiogenic n	< 0.005
ER	0.008
Total	0.09±0.04

Low WIMP mass search (S2-only)

- Light WIMPs (~2 GeV) might produce low energy NR
- Other lighter DM candidates (~50 MeV) might induce low energy ER
- Low-energy interactions \rightarrow S1 too small (E_{th} ~13keV_{nr})
- S2 charge signal sensitive to a single e⁻
 Hardware trigger efficiency 100% above 30 PE
 E_{th}<0.6 keV_{nr} sensible to low mass WIMP
 S2 yield = 23 (1) PE/e⁻,

Background:

- electrons captured $0.5 \times 10^{-5} \text{ e}^{-/\text{e}^{-}}$ ER Analysis threshold set to $N_{\text{e}^{-}} = 3$
- Low E phenomena from the TPC walls (Fiducialization: volume under inner 7 PMTs)
- Large S1 with S2 in the ROI

Low WIMP mass: above 1.8 GeV

- ➤ ER energy scale: ³⁷Ar
- ➤ NR energy scale: AmBe and AmC
- At low energy excess of events (between $N_{e-} = 4$ and $N_{e-} = 7$)
- N_{e-} spectra expected for recoils induced by dark matter particles with 2.5, 5 and 10 GeV/c² for 10⁻⁴⁰cm² xsec

Fits performed using two thresholds $N_{e-} = 7$ (down to ~3 GeV) and $N_{e-} = 4$

Two models with and w/o fluctuations in the energy quenching (E_{th} =0.6 keV_{nr})

Competitive results at $M_{\chi} > 1.8 \text{ GeV/c}^2$ *Phys.Rev.Lett.* 121 (2018)

LAr vs LXe: why LAr?

- ✓ Density
- ✓ ~50% odd isotopes (¹²⁹Xe, ¹³¹Xe) for spin dependent interactions
- ✓ No long-lived radioactive isotopes

- × Price
- **ER** discrimination

LAr:

LXe:

- ✓ Available in large quantity
- ✓ ER background discrimination

* Radioactive isotopes $^{39}Ar \rightarrow 1.01 \text{ Bq/kg}$

"Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC" JCAP 12 (2018) 011

"Measurement of the specific activity of ar-39 in natural Argon"

Technology breakthrough 1: radiopure Ar

URANIA project:

Procurement of 50 ton of UAr extracted from the CO₂ wells at Cortez mine, Colorado (~330 kg/d, 99.99% purity)

- ARIA project:
 - Seruci 1: chemical purification of the UAr by cryogenic distillation (reduction factor 1000 per pass, 1 t/d)
 - Seruci 2: Active Ar-39 depletion via isotope distillation

Roberto Santorelli - Santiago Oct,2020

DART: Radiopure Ar measurement

- Main Lab under mount Tobazo
 - ~850 m rock
- ➤ ~2500 mwe
- $> 1400 \text{ m}^2$
- ArDM
- \triangleright 850 kg AAr to be used as active veto (E_{veto}= 10 keV)
- > RUN-I SP operations, DP planned

7% uncertainty in about a week of running for 1400 DF

C.A. Aalseth, JINST 15 P02024 (2020)

Technology breakthrough 2: radiopure cryogenic SiPM

- **Radiopure** ~2 mBq/PDM dominated by the substrate(for SiPM and front-end)
- High PDE (~ 50%), >90% fill factor
- Gain $> 10^6$
- 0.1 Hz/mm²dark count rate (87 K)
- Time resolution ~3 ns (sigma)
- Power consumption <100 μW/mm²

- \triangleright 6 SiPMs \rightarrow 1 r.o. channel
- \triangleright 4 channels \rightarrow one tile (PDM)
- \triangleright 25 tiles \rightarrow one Motherboard (PDU)

8280 PDMs (+3000 in the Veto)

21 m² SiPM, LY above 8 PE/keV A packaging facility (NOA) at LNGS funded by INFN

DarkSide-20k:Baseline design

- *GADMC*: New collaboration with groups from DS-50, ArDM and DEAP-3600.
- More than 70 institutions, 350 researchers,
 12 countries (still growing)
- 200s ton \times yr exposure with < 0.1 evt bkg
- ~50 ton low radiactivity Ar
- ~ 20 m² SiPM, LY above 8 PE/keV

- ProtoDune style large cryostat to provide shielding and active VETO
- Cubic volume, 8.5 m side (7.9 m int. height). 700 t AAr.
- Sensitivity $\sim 10^{47}$ for 1 TeV/c² WIMP mass
 - →Fully scalable design for future larger size detector (300 ton)

DarkSide-20k: Projected sensitivity

New studies: Recoil Directionality (ReD)

Goal: to sense recoil directionality in Liquid Argon

Strategy: Columnar recombination models suggest that the magnitude of the e⁻/Ar⁺ recombination depends on the angle between the field and the track direction.

ReD will try to demonstrate whether columnar recombination in a LAr TPC can provide directional DM detection

Neutron beam produced at INFN - LNS by the 15 MV Tandem via the p(⁷Li, ⁷Be)n reaction

Recoil directionality might be the key for dark matter **discovery!**

Summary

- Competitive results with Ar(DP)-TPCs
 - High mass WIMPs
 - Low / Sub-GeV mass WIMPs
- Exciting studies and technological developments on several fronts: UAr, SiPMs, directionality...etc
- PSD+ UAr+ SiPM+Radiopurity makes Ar a good candidate to lead the path towards the neutrino floor
- We are looking forward to the results of DP neutrino prototype

Backup