Techniques for TPC calibration: application to liquid and dualphase Ar-TPCs

José Maneira (LIP)

Topical Workshop on New Horizons in Time Projection Chambers Santiago de Compostela + Online October 8, 2020

Fundação para a Ciência e a Tecnologia

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

My own biases...

- My experience is in large Neutrino Physics and HEP detectors
 - DUNE, SNO+, SNO, Borexino, ATLAS
 - Currently my (TPC-related) role is Calibration and Cryogenic Instrumentation Consortium Leader at DUNE

Outline

- Introduction
- Measurements with natural and intrinsic sources
- Ionization with UV lasers
 - Early systems for gas detectors, R&D towards usage in liquids
 - The first laser system in a large detector: MicroBooNE
 - Plans for DUNE and ProtoDUNE, single and dual-phase
- Pulsed neutron source, a new idea for DUNE
 - Neutron transmission and capture in argon
 - How to calibrate large detectors from outside
- Outlook

Introduction

Liquid Argon TPC

Drift in liquid No amplification Collection in liquid

Vertical drift in liquid Amplification and collection in gas

6

Two Types of CalibrationLow-LevelHigh-Level

- Measure model parameters
 - Wire collection efficiency, etc.
 - Detector geometry
 - HV system defects
 - Drift velocity/E-field maps
 - Purity/lifetime
 - Recombination model
 - Work function
- Spatial uniformity, time stability
- Input to both simulation and reconstruction

- Check performance of reconstruction
 - Overall energy scale factor
 - Energy/momentum scale and resolution
 - Position offsets/resolution
 - Particle ID algorithm biases
- Contribute to determine correlations and systematic uncertainties and
- Input to physics analyses fits

How well we need to know these?

Driven by physics goals. Example: DUNE

- Oscillation physics: CP-violation and neutrino mass ordering
 - Energies O(GeV)
 - Uncertainty on energy scale < 2% (5%) for leptons (hadrons)
- Supernova neutrino burst
 - Energies O(MeV)

8

- Energy resolution 20-30%

DUNE FD Technical Design Report Vol.II:Physics arXiv:2002.03005

Large LAr detectors mentioned in this talk

(approx. dimensions of TPC in all cases)

Other large LAr detectors

- The near and far detectors of the FNAL short-baseline program
- ICARUS is the pioneer LAr experiment moved to FNAL from Gran Sasso via CERN

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Natural and intrinsic sources

- <u>Cosmic muons</u>
- Natural radioactivity (e.g. ³⁹Ar)
- Atmospheric neutrinos

- <u>Neutrino beam events</u>
- Muons from neutrino beam interactions in rock

Cosmic muons

- Measure parameters
 - Space charge effect/drift
 - Lifetime
- Detector response to "standard candles"
 - through-going and stopping muons
 - Michel and Delta-ray electrons
 - π^0 decay

- Many possible measurements
- Free
- Challenges
 - Low statistics if deep UG

Advantageous to have an independent position/direction

ProtoDUNE Cosmic-Ray Tagger

Space-charge effect (SCE) Study in MicroBooNE

- Ion drift velocity much lower (2x10⁵) than for electrons
- Charge buildup (cosmics) distorts E-field and drift velocity, worse with fluid flow
- Impacts position and recombination
- Distortions of tracks observed with endpoints of externally tagged muons

MICROBOONE-NOTE-1018-PUB

13 José Maneira I Calibration of liquid and dual-phase Argon TPCs

Electron lifetime

 $dQ'_e = dQ_e e^{-t/\tau}$

- Crucial for good charge/energy response
- Directly related to purity, so can change fast and be non-uniform across detector
- ProtoDUNE performance
 - Measured with tagged cosmics, high statistic
 - Extremely high purities and good agreement with purity monitors
 - Q ratio (Ct) at Cathode: precision of 0.5% (stat) achieved

Energy response maps

DUNE:ProtoDUNE-SP x<0 Cosmics data YZ correction factors .6 1.2 0.8 200 400 600 Z Coordinate [cm] DUNE:ProtoDUNE-SP Cosmics data

200

600

500

Y Coordinate [cm] 000 000 000 cm]

100

0

1.10

X correction factors 00

0.95

-200

X coordinate [cm]

- After gain/SCE corrections, equalization of charge collection efficiency using cathode crossing cosmic ray tracks
 - Stopping muons for absolute energy scale
- ~100 k tracks for 2% precision and fine map
- How long to do the same deep UG?
 - Anode crossing-tracks? ~ 15 years
 - All tracks? At least 14 months (w/ 50%

arxiv: 2007.06722

Michel electrons

- Wide electron spectrum from stopping muon decay
- Helps constrain energy scale at low energies

Beam events: $\pi^0 \rightarrow 2\gamma$

• Invariant mass of pi0 decay provides energy calibration in a wide range

E_{ν} spectrum for ν_{μ} CC π^{0} events photon spectrum leading photon subleading photon Fraction of Events MicroBooNE Simulation 100 200 300 500 600 400 700 0 photon energy [MeV] 70 π^0 signal 60 background π^0 candidates / 14.7 MeV data 50 MicroBooNE 40 30 20 10 0 100 200 300 500 400

C. Adams *et al* 2020 *JINST* **15** P02007

Reconstructed $M_{\gamma\gamma}$ [MeV/ c^2]

Ionization with UV laser

18 José Maneira I Calibration of liquid and dual-phase Argon TPCs

Calibration via ionization (gas)

- Use lasers to "simulate" particle tracks
 - Advantages: narrow beam, well defined position and timing, independent of magnetic fields
 H. Anderhub et al. 1979 NIMA 166 p. 581
 - Idea proposed in 1979 for drift chambers. Gas mixture with ionization potential of 6.5 eV so that two-photon absorption can occur with N₂ laser (337 nm, 3.7 eV)

G. Hubricht et al. 1985 *NIMA* **228** p. 327

- Studies of energy density vs mixture, wavelength[†]
 - Using also Nd:YAG laser 4th h. (266 nm, 4.67 eV)
 - With additives (e.g. TMA), can reach ionization densities higher than particles
 - Needs only moderate intensities (1µJ/mm²)

Application: calibration of ALEPH

- Idea applied to the calibration of the ALEPH (LEP/CERN) gas TPC
- Ingenious system of mirrors simulates beam from e+e- interaction point
- Used to monitor drift velocity and misalignments

Ionization of liquid argon

- LAr ionization potential = 13.84 eV
- In purified liquid argon, there are no low ionization potential states from impurities or additives

- Absorption of two (266 nm, 4.67 eV) photons only capable of excitation, need a third one to ionize
- First measurements in 1996, at CERN, for ICARUS
- Much higher laser intensities needed, ~0.5 mJ/mm²

MicroBooNE laser calibration system

- First implementation in a large detector, with two laser benches + periscopes
- Coverage pattern due to shadows from field cage

SBND also building a laser system

MicroBooNE results

- Compare TPC reconstructed track with "true" track (given by mirror position)
- Combine two tracks from opposite lasers to cancel displacement ambiguities
- Fit displacement map to obtain map of E-field distortions - up to 15%
- Stat. / Syst unc. each ~ 2%

24 José Maneira I Calibration of liquid and dual-phase Argon TPCs

Laser calibration for DUNE

- Stringent physics requirements • ~2% energy scale, and low statistics of cosmics deep UG
- Need dedicated calibration systems
 - position shifts of anode, cathode, HV system
 - various QC checks for wires. gaps, HV system
 - drift velocity/E-field
 - electron lifetime (under study)
 - photon detection system
- Challenge due to huge size (100x MicroBooNE !)

SP Calibration access ports

- Plan to have at least two lasers per drift volume. Range needs to be about 20m (MicroBooNE showed > 10m)
- New designs to avoid shadowing, improve alignment and checking direction

DUNE TDR

B. Abi et al 2020 JINST 15 T08010

New designs for DUNE

- Better coverage of TPC volume
 - opening on top FC (SBND also)
 - dual rotation for ports on the side
- Alignment system
 - target+camera+visible laser
- Beam location systems
 - fixed to Field Cage

All drawings: Preliminary!

PIN diode pad

Vertical Retraction Opening in top Field Cage

Quartz tube

Movable bottom mirror (M4)

27 José Maneira I Calibration of liquid and dual-phase Argon TPCs

Fixed bottom mirror (M5)

mirror pad

Upcoming: ProtoDUNE-II

- ProtoDUNE-I (just ended) has no dedicated TPC calibration systems
- All these new systems will be installed and tested in ProtoDUNE-II soon!

Dual-phase

- Dual-phase has better S/N than SP, but larger SCE
- Dual-phase has a longer drift length: 12 m instead of 3.6 m.
- Due to amplification, ions produced in gas phase are much more than in the liquid and can drift back into the liquid causing much more SCE
- SCE in DUNE SP expected to be low (<1%) but in DP could be up to 15%, similar to SP detectors at surface
- Even more crucial to measure this effect in Dual-Phase

Dual-phase

- Design for calibrations in dualphase less advanced than in SP
- Current idea is to use the same type of periscopes, inserted in gap between anode readout and field cage
- Should be possible to deploy 12 periscopes in a single module of DUNE DP

Source Calibrations

- Pulsed neutron source
- Radioactive source deployment

Neutron interactions in argon

n + ⁴⁰Ar = ⁴¹Ar + 6.1 MeV

- Measurements at Los Alamos answering these questions:
 - Thermal neutron capture cross section? ²
 [ACED, published]
 - Correlated gamma cascade? [ACED, ongoing]
 - Neutron-argon scattering anti-resonance
 @ 57 keV? [ARTIE, ongoing]
- Idea: use an external neutron source to calibrate DUNE
 - 6.1 MeV events calibrate low energy response (SNB, solar) Proposed by Bob Svoboda (UCDavis)

V. Fisher et al., Phys. Rev. D 99, 103021 1400 ENDF/B-VIII.0 W. Koehler (1963) 1200 R.L.D. French et al. (1965) N. Ranakumar et al. (1969) nis work 1000 Total error 800 600 *********************** 400 before ACED 200 10⁻¹ 2×10⁻² 3×10⁻² E_n (eV) σ_{tot} [b] 10 ENDF natural Ar 10^{2} Winters (0.2 atoms/barn) 10 10 10⁻² 10⁻³ 40 60 80 Neutron Energy [keV]

Neutron Calibrations in DUNE

- Source: commercial DD generators, 2.5 MeV
- At a cryostat port, just to avoid absorption in insulation layer
- Two locations at both ends may be enough to cover 58 m long TPC

 \odot

Ō

O

DUNE TDR

⊙:

8

8

0

0

8

0:

José Maneira I Calibration of liquid and dual-phase Argon TPCs

33

Tests in ProtoDUNE

- Neutron (DD) generator sent from LANL to CERN this year
- Well-shielded and placed at a port on ProtoDUNE-SP
- Tests over a few days this July, just before turning detector off
- Valuable operational and physics data taken, analysis ongoing Stay tuned!

Outlook

- Calibrations of TPCs from a combination of natural and dedicated sources
 - Many efforts over the years in ICARUS, LArIAT, ArgoNeuT, MicroBooNE, ProtoDUNE, SBND
- Dedicated sources more necessary for deep underground detectors
- Integrated plan for DUNE far detector
 - Long history of developments in laser calibration will have its next step in ProtoDUNE
 - New ideas with a neutron source
 - Plans for near detector starting to form. Gas and liquid argon TPCs

Acknowledgements

This work is funded by Portuguese national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the framework of project CERN/FIS-PAR/0012/2019

Extra slides

- Naturally present ~1 Bq/kg
 - high statistics, uniform
- β-decay with Q = 565 keV
 - well defined spectrum, but very low energy
- Sensitive to:
 - e lifetime
 - Recombination
 - Electronics noise
- Challenges
 - unknown position in drift direction
 - triggering hard

