A COMPACT TPC FOR THE SPHENIX EXPERIMENT AT RHIC

o Klaus Dehmelt

o New Horizons in Time Projection Chambers

o October 09, 2020

The State University of New York

SPHENIX AND THE TIME PROJECTION CHAMBER

SPHENIX AND THE TIME PROJECTION CHAMBER

sPHENIX @ the Relativistic Heavy Ion Collider RHIC in 2023

s PHENIX $@$ RHIC

$sPHENIX$ $@$ RHIC

Accomplished by

- 3-layer Si-pixel detector (MAPS)
- 4-layer Si-strip detector (Intermediate tracker)
- Compact Time-Projection Chamber (TPC)
- \circ TPC \rightarrow continuous readout, small space charge distortion
- Barrel solenoid magnet (Babar) dictates dimension of TPC
	- \times 20 cm < radius < 78 cm, 2π azimuthal coverage
	- \blacktriangleright Total length = 211 cm \rightarrow $|\eta|$ < 1.1 polar coverage

SPHENIX AND THE TIME PROJECTION CHAMBER

INTT

Silicon strips, 2 layers re-use of PHENIX FVTX electronics

MVTX

Monolithic Active Pixel Sensors (MAPS), 3 layers, based on ALICE ITS IB detector

SPHENIX AND THE TIME PROJECTION CHAMBER

CHALLENGE: SPACE CHARGE IN SPHENIX TPC $@$ RHIC

• Head-on collisions Au-Au @ 200 GeV/nucleon at RHIC produce thousands of particles

CHALLENGE: SPACE CHARGE IN SPHENIX TPC $@$ RHIC

• Head-on collisions Au-Au @ 200 GeV/nucleon at RHIC produce thousands of particles

CHALLENGE: SPACE CHARGE IN SPHENIX TPC ϖ RHIC

- Head-on collisions Au-Au @ 200 GeV/nucleon at RHIC produce thousands of particles
- Focus on combatting Ion Back Flow IBF

TIME PROJECTION CHAMBERS IN COLLIDER ENVIRONMENT SO FAR

- PEP4 @ SLAC
- ALEPH/DELPHI @ LEP
- STAR @ RHIC
- ALICE @ LHC
	- All had in common: MWPC amplification readout
	- Today's drawback
		- ❖ Spatial arrangement of wires -> spatial resolution
		- \bullet Slow ion signal
		- ❖ Ion backflow reduction only possible with active gating
	- Spatial resolution: **E x B** effect
	- Gate option limits high rate readout
- Solution: MPGD readout → overcome E x B, fast e- signal, **combat Ion Back Flow w/o gating**, ALICE TPC already upgraded!

MPGD BASED TIME PROJECTION CHAMBER

• Time Projection Chamber (TPC) for

- Momentum measurement
- o Tracking
- o Probably particle identification (PID), e.g., dE/dx

MPGD BASED TIME PROJECTION CHAMBER

• Several ways to combat Space Charge

- 1. Make the ions fast through mass
- 2. Choose the largest drift field possible
- 3. Optimize amplification device's operating point
- Update design of field cage informed by current experience
- 5. Improve amplification device
	- i. Remove "gain fluctuation" before amplification
	- ii. Increase number of amplification stages
- 6. Multi-layer gating grid
- 7. Accelerator parameters
- 8. Don't let ions be created

9

• Several ways to combat Space Charge

1. Make the ions fast through mass

 $v_{ion} = K \cdot E$ with K: ion mobility E: Electric field 1 K_{tot} = f_1 K_1 $+$ f_2 K_{2} $+$ f_3 K_3 $+ \cdots$

 \rightarrow Choose primary gas component with low mass: Ne-based (e.g., Ne-CF₄ 90-

• Several ways to combat Space Charge

2. Choose the largest drift field possible

• Several ways to combat Space Charge

3. Optimize amplification device's operating point

Gain on first GEM determines desired properties \rightarrow compromise between energy resolution and IBF

11

• Several ways to combat Space Charge

3. Optimize amplification device's operating point

Gain on first GEM determines desired properties \rightarrow compromise between energy resolution and IBF

11

• Several ways to combat Space Charge

3. Optimize amplification device's operating point

Gain on first GEM determines desired properties \rightarrow compromise between energy resolution and IBF

• Several ways to combat Space Charge

3. Optimize amplification device's operating point

Gain on first GEM determines desired properties \rightarrow compromise between energy resolution and IBF

ePHENIX

Recover dE/dx when environment allows

• Several ways to combat Space Charge

4. Update design of field cage informed by current experience

Space charge distortions at maximum where space charge density has discontinuity \rightarrow FC entrance windows Analytical 3-D model based on work for ALICE TPC revealed large distortions close to inner FC

• Several ways to combat Space Charge

- 5. Improve amplification device
	- i. Remove "gain fluctuation" before amplification
	- ii. Increase number of amplification stages \rightarrow Quintuple GEM?
- 6. Multi-layer gating grid
- 7. Accelerator parameters \rightarrow Crossing angle?
- 8. Don't let ions be created \rightarrow Electroluminescence
-

5. – 8. require (significant) R&D

• Field Cage \rightarrow Inner/Outer for sPHENIX

• Field Cage \rightarrow Inner/Outer for sPHENIX

Hybrid between STAR and ILD

SAMPA progress (FE)

 $Y[0]\lambda] \bigcirc 20.0 \text{ mV} \bigcirc \bigcirc 100 \text{ mV} \bigcirc Y[0]\lambda] \bigcirc \bigcirc 1$

 $\sqrt{3000}$ 0.0 V

- SAMPA v5 components were produced in a multi-project wafer (MPW) run
- Initial test shows a good linearity for 80nsec shaping and 30mV/fC gain. \bullet
	- Power consumption: 6mW/ch
	- Noise: ~500e @ C_{in}=0, ~600e @ C_{in}=20pF

*** W Stony Brook University** | The State University of New York

ALICE Quadruple GEM schematics \rightarrow sPHENIX Quadruple GEM schematics

ALICE Quadruple GEM schematics \rightarrow sPHENIX Quadruple GEM schematics

sPHENIX Quadruple GEM schematics

- Standard pitch not rotated
- Large pitch rotated
- Large pitch not rotated
- Standard pitch rotated

• IBF for these configurations determined with X-ray

0.44%, 0.39%, 0.33%, 0.31%

• All configurations tested in test-beam

• R2 GEM structure

• R2 GEM structure

***** Stony Brook University | The State University of New York

 $\binom{21}{ }$

Fig. 1 Sketches of two different readout patterns demonstrate charge sharing and its impact on the centroid calculation and the related position error for a zigzag and rectangular pad geometry. 6 channels are shown for each pattern with the same pitch. (The drawings are to scale.)

- Low diffusion can cause single pad hits \rightarrow poor resolution
- Zig-Zags not only minimize single hits, they achieve resolutions to a smaller fraction of pitch than rectangles
- EXTENSIVE studies at BNL lead to several principle conclusions
	- Incursions of nearly 100% are required for good linearity.
	- Tip-to-tip pitch must be controlled relative to avalanche spread.
	- \circ Best linearity when gaps are VERY small (<100 μ m).

- Incursion: percentage of pad spacing by which one ZZ penetrates its neighbor
- 100% incursion means neighbors tip penetrates to nominal pad center

SPHENIX TPC: READOUT MODULES GAS CHOICE

- Neon: high v_{drift} for ions
- Tetrafluoromethane CF_4 : cold gas, high $\mathbf{v}_\mathrm{drift}$ for et
- IBF configuration

SPHENIX TPC: READOUT MODULES GAS CHOICE

- Neon: high v_{drift} for ions
- Tetrafluoromethane CF_4 : cold gas, high $\mathbf{v}_\mathrm{drift}$ for et
- IBF configuration

SPHENIX TPC: READOUT MODULES GAS CHOICE

- Primaries (14%) : Up by $71.5/31.5$
- ▶ IBF (86%): Down by 31.5/71.5 (produce constant signal height)
- Residency up by $3.6^{**}/1.77$

Test beam @ Fermilab 2018

Test beam @ Fermilab 2019

- o Real sPHENIX RO
- Independent HV
- Low IBF configuration

- Test beam @ Fermilab 2019
	- o Real sPHENIX RO
	- Independent HV
	- Low IBF configuration

- Test beam @ Fermilab 2019
	- o Real sPHENIX RO
	- Independent HV
	- Low IBF configuration

- Test beam @ Fermilab 2019
	- o Real sPHENIX RO
	- Independent HV
	- Low IBF configuration

We are also building the TPC

- Mandrel
	- \times Inner FC
	- Outer FC

SPHENIX LASER SYSTEM

Laser calibration

- Determine drift velocity throughout TPC volume
- Determine electric field distortions
- Determine precise alignment of field cage w.r.t. endcap and magnetic field

Strategy

- o Shine diffuse laser light onto central membrane and liberate clusters of charge
- Shoot laser beams into TPC volume to mimic straight particle tracks
- Compare straight tracks to displaced/distorted tracks
	- \times Beam ON vs OFF (space charge effect)
	- B-field ON vs OFF (**E x B** effect)

Drift velocity

- Charge from central membrane travels full drift distance [→] **absolute integrated drift velocity**
- Single sweeping laser beam \rightarrow continuous **sampling of drift velocity/**quadrant of the TPC volume

*** Stony Brook University** | The State University of New York

 \circ Integrated drift time \rightarrow **hard constraint** for point by point determination of drift velocity

SPHENIX TPC FAST OUTER LAYER: CALIBRATION

*** Stony Brook University** | The State University of New York

SPHENIX TPC FAST OUTER LAYER: CALIBRATION

Two tiles One on each side of the central membrane In front of one GEM sector

Four tiles Covering full z acceptance In front of one GEM sector

Allows to monitor the full z extend of the distortions

12 tiles at mid-rapidity In front of each GEM sector **Monitor Gain/IBF fluctuations** Enables some physics at mid rapidity

Suffers from dead area due to central membrane

24 tiles

12 on each side of the central membrane One tile in front of each **GEM** sector

Same as 12 Tiles but no dead area from CM

SPHENIX TPC FAST OUTER LAYER: CALIBRATION

CONCLUSION (SO FAR)

- TPC for Heavy Ion experiments well in business
- Heavily relied on ALICE TPC R&D and advice
- Primary goal sPHENIX TPC
	- provide momentum measurement
	- no dE/dx program
	- combat ion backflow
- MPGDs are solution
- Room for further improvement
- TPC for sPHENIX \rightarrow compatible with TPC-requirements ω EIC
	- @ EIC: most likely less IBF problem
	- sPHENIX TPC designed with eye on EIC
	- Equip idle readout region
	- Change gas choice
	- Alternative MPGD solution
- Please visit:<http://skipper.physics.sunysb.edu/~prakhar/tpc/> \rightarrow Extensive set of simulations

MORE

SPHENIX AND IBF

• Several ways to combat Space Charge

- 5. Improve amplification device
	- i. Remove "gain fluctuation" before amplification

39

SPHENIX AND IBF

- \bullet FC design includes a "termination grid" to ensure
uniformity of the field in the drift volume
- Multiple simulations: \bullet
	- o Wire mesh,
	- Photo-etched \circ
	- o Square/Round Hole
- Single conclusion:
	- Tune the field ratio \circ surrounding the mesh to block many positive ions

Stony Brook University | The State University of New York

SPHENIX TIME PROJECTION CHAMBER

N. Smirnov, R. Majka
SPHENIX TIME PROJECTION CHAMBER

▪Dual-GEM + MicroMeGas Solution from Yale

40

SPHENIX LASER SYSTEM: TECHNICAL OVERVIEW

Layout of TPC End Plates entrance ports \triangleright Two rings of 12 1/4" NPT Feedthrough's

• Micro-actuated mirror allows a single laser beam to sweep an entire quadrant of the TPC volumeStony Brook University | The State University of New York

SPHENIX TIME PROJECTION CHAMBER SAMPA progress (ADC, FE+ADC)

- ADC and FE+ADC components
- ENOB of ADC is found to be better than that of SAMPA v4
	- Improvement at 18MHz is seen and is close to expected \longrightarrow
- Pulse shape is successfully measured by FE+ADC
- 1, CSA+Shaping only

decaps

2, ADC only

ADC

3, Inclusive chain (FE+ADC)

*** W Stony Brook University** | The State University of New York

80nsec, 30mV/fC

