R&D progress on resistive DLC

Yi Zhou

On behalf of the Resistive DLC Collaboration

Outline

> Short summary of small samples made by Hauzer

> Adhesion test of the new DLC + Cu foils

> R&D on large area DLC coating

Advantages of the Hauzer device(Compared with Teer)

- ➤ Able to heating the substrate up to 450°C; (Effective way to increase the adhesion between DLC & substrate)
- ➢ Provide very powerful plasma source etching(PSE); (Effective way to increase the adhesion between DLC & substrate)
- ➤ Maximum sample size up to 1.4m × 0.65m; (Make the production for large size samples possible)
- > Vacuum degree can be controlled by computer; (Better for resistivity control)
- ➤ Shutters for target protecting are available and can be controlled by computer; (Allow multi-coating in one batch)

First time to use Hauzer for the production

- > Teer is not able to coat large area samples, so we try to use Hauzer for the production;
- ➤ We coated DLC, Metal doping DLC, DLC+Cu using the Hauzer;

Different kind of drums;

Round for soft substrates

Square for hard substrates

Measurement tools

CE

SUPER MEGOHM METER SM7110, SM7120

300 Times Better Noise Resistance

Min. 6.4 ms Measurement Speed Max. 2000 V Output

> Max. 2×10¹⁹ Ω Display Min. 0.1 fA Resolution

SUPER MEGOHM METER **SM7120**

Electrometer Picoammeter IR Meter

Max. 1000 V Output

- > HIOKI SM7110 and 7120 are used for the resistivity measurement of most samples;
- > The small tools are used to measure very small samples, or the samples with very low resistivity;
- \triangleright Resistivity value measured by these two kind of tools have a factor of (1.3 \sim 1.4)

Resistive DLC made by Hauzer

Rules are similar with Teer

- Better vacuum will get lower resistivity;
- Higher temperature will get lower resistivity;
- > Resistivity increases in air then become stable;
- Hydrogen doping can greatly increase the resistivity;

Different performances

- ➤ Much long passivation time in air;

 DLC made by Teer is about 3~4 days;

 DLC made by Hauzer is about 10~14days;
- ▶ Resistivity increasing in air is much larger;
 DLC made by Teer is about 30%~40%;
 DLC made by Hauzer is about 40%~120%;

Resistivity increasing in air

Preparing DLC + Cu with advanced technique

Flow chart of the DLC + Cu with "C & Cr co-deposition" Layer

Flow chart of the DLC + Cu by "One-batch" method

C & Cr co-deposition

C: $2kW \rightarrow 0kW$, Cr: $0kW \rightarrow 1.5kW$, For 1min

Cr deposition

Cr: 1.5kW →3kW immediately, then keep 3kW for 1min

Cr & Cu co-deposition

Cr: $3kW \rightarrow 0kW$, Cu: $0kW \rightarrow 1.3kW$, For 0.5min

Cu deposition

Cu: 1.3kW→4kW immediately, then keep 4kW for 97.5min

Adhesion Test

Adhesion test 1

DLC+Cu with C & Cr co-deposition layer

	Cat part					
Batch No.	Adhesion1	Adhesion 2	Adhesion 3	Adhesion 4	Adhesion 5	1 2 3 4 5
H2020-06-21-4	0	0	0	0	0	
H2020-06-23-9	0	0	0	0	0	Saved part
T2020-06-19-1	0	0	0	0	0	
T2020-06-17-2	0	0	0	0	0	25cm x25cm

➤ Adhesion is very bad, this maybe caused by the missing of the plasma source etching(PSE) process;

Cut part

Adhesion test 2

DLC + Cu Made by "One-Batch" method

Batch No.	Adhesion1	Adhesion 2	Adhesion 3	Adhesion 4	Adhesion 5	
H2020-06-28-3	100	100	100	100	100	
H2020-06-28-3	100	100	100	100	100	
H2020-06-28-4	100	100	100	100	100	
H2020-06-28-4	100	30	30	60	60	١

- > "One-Batch" method shows very good adhesion;
- ➤ The 4th sample is not perfect, the possible reason is the surface is not clean and the PSE process is missing;

Coating for Large area samples(PCB and APICAL)

Resistivity measurement for large area samples

PCB: 24×12 points APICAL: 23×11 points

Resistivity uniformity of a-C:H on 125cm×65cm PCB

 \succ The resistivity significantly decreasing when the height is increasing, this caused by the C_2H_2 gas flow;

Resistivity uniformity of a-C on 125cm×65cm PCB

> The variation of the resistivity is reasonable now;

Test of edge effect

> To make sure it is not the edge effect caused the large resistivity on Top & Bottom;

Uniformity Comparing

- ➤ The large area PCB and the 3 small PCBs are coated in the same condition, but due to the different gas release, the absolute value is quite different;
- The uniformities are quite consistent;

Calibration of Thickness .VS. Height

Resistivity uniformity of APICAL1

- The drum horizontally moved, this caused the center of the drum deviated the rotating axis;
- > The distance between the target and one end of the foil are shorter than the other end of the foil;

Resistivity uniformity of APICAL2

Same reason caused the resistivity increases when the X position increase;

Resistivity uniformity of APICAL3

Same reason caused the resistivity increases when the X position increase;

Summary and next work

Resistivity of DLC made by Hauzer shows different behavior

- > Resistivity increasing caused by passivation is quite different, we need more samples and test;
- > Resistivity decreasing caused by heating should also be systematically tested;

We need more R&D on Adhesion

- > "C & Cr" co-deposition layer should work, we will try to add a PSE step before "C & Cr" coating to see if it can improve the adhesion
- "One-Batch" is a potential method to improve the adhesion, we will continue work on this to understand how to make the resistivity controllable;

R&D on Large area coating

- \triangleright Maximum size of DLC samples is up to 1.4m \times 0.65m;
- For a-C, we have much better uniformity;
- > Try to find the thickness which can provide the best uniformity;
- ➤ We will try to coat large area DLC + Cu samples next time;