

Numerical study on the gain variation due to the gas-gap non-uniformity in large scale Micromegas production

Thorben Swirski

Deb Sankar Bhattacharya

Raimund Ströhmer

RD51 Collaboration Meeting 2020/10/05

- Production tolerances lead to a distribution of pillar heights and therefore gap size
- This distribution can have both systematic and statistical contributions
- The distribution has been measured, for example for ATLAS Micromegas (but this holds for all

detectors):

UNIVERSITÄT **DIFFERENT TYPES OF NON-UNIFORMITY**

In Experiment

The case is ideal when the pillar height is uniform through out the strip and on all the strips

- non-uniformity along a strip (left to right).
- The signal from each strip should be already convoluted depending upon the distribution of the non-uniformity.
- Strip by strip signal might not look too different.
- non-uniformity in a PCB, changing from bottom to top (along I). But uniform along a strip.
- Strip by strip signal might look different.
- Finally, a more practical situation is a mixture of both the above cases.

(considering only perpendicular tracks to probe)

Julius-Maximilians-

WÜRZBURG

UNIVERSITÄT GARFIELD++ SIMULATION

From: <u>Ö. Sahin – Penning Transfer in Argon</u> based Gas Mixtures

- ANSYS field map of a micromegas detector with a full mesh and a copper anode
- 93:7 Ar:CO₂ with full
 Penning simulation (0.42 transfer rate)
- V_c= -300V and V_A= 570V with grounded mesh, 118, 120, 122, 124, 126, 128 μm

PSITÄT GARFIELD++ SIMULATION (CONT.) **RZBURG**

- For each event, one muon is injected into the detector
- This then ionises the argon in the gas in different clusters of electrons which are then tracked individually
- Both the amount of electrons on the anode and the induced signal (calculated using weighting fields) are obtained

Number Of Primaries

Julius-Maximilians-

UNIVERSITÄT GAIN CURVE (I.E. GAIN PER ELECTRON)

UNIVERSITÄT ELECTRONS ON THE ANODE

Muon Signal @ 122 µm

Transparency

Mean Gain per Primary

UNIVERSITÄT WÜRZBURG MEAN SIGNAL (NUMBER OF ELECTRONS) VS GAP SIZE

Most Probable Signal per Muon

UNIVERSITÄT WÜRZBURG ELECTRONICS FOR ONE MUON EVENT

Raw Signal Example @ 122 µm

UNIVERSITÄT WÜRZBURG FOR ONE MUON EVENT

Signal Example @ 122 μ m

05.10.2020

UNIVERSITÄT WÜRZBURG SIGNAL WITH SIMULATED ELECTRONICS VS GAP SIZE (HEIGHT)

Most Probable Signal (simulated electronics - Height)

Very large change (approx. $31\%/10 \ \mu m$)

UNIVERSITÄT WÜRZBURG SIGNAL WITH SIMULATED ELECTRONICS VS GAP SIZE (INTEGRATED)

Most Probable Signal (simulated electronics - Integrated)

• Small Variations in gap size can make large differences in gain ($\approx 31\%/10 \ \mu m$) and in signal ($\approx 31\%/10 \ \mu m$)

CONCLUSION

- These effects have been studied in simulations
- Goal to look at electronics simulation and gain more information, like timing
- Also, different gasses might be studied in the future (like 93:5:2 Ar:CO₂:Isobutane)

Julius-Maximilians-

We thank:

Julius-Maximilians-

- Luigi Longo, CERN,
- Paul Colas, CEA, Saclay, France,

ACKNOWLEDGEMENTS

- Supratik Mukhopadhyay and Nayana Majumdar, SINP, Kolkata, India,
- and the members of the RD51 collaboration

for their invaluable support and suggestions.