Meeting RD51 - 08/10/2020

Study by simulation of the influence of surface condition and grid shape on performances of Micromegas detectors

Outline

- 1) Influence of surface condition
- 2) Influence of mesh shape
- 3) Conclusion

Introduction

Micromegas with anode on a glass substrate have shown better energy resolution (13% @ 5.9 keV):

 \rightarrow Is it because of its smoother surface condition ?

E. Pollacco

Introduction

Conclusions drawn from this study:

Conclusions/Recommendations

- Tests in progress should tell us where/when we should stop.
- Results to date show the obvious that with a surface roughness and planarity compatible within λ the results can be improved.
- As with our advance in using clean rooms etc have improved the performance – these results suggest that by having the right definition and monitoring hardware we should be able to make significant progress.
- Add other physics/applications
- The results provide a leading edge of B-MM with respect to other assemblies.

E. Pollacco

Simulation chain

1) GMSH: 3D modelisation and meshing software

2) ElmerFEM : Electric field computation software by Finite Elements method

3) Garfield++:
Avalanche computation
in gaseous detectors

Flat anode model

- amplification gap of 100 µm
- cathode high voltage from 200 to 350 V
- no grid because we only study influence of anode roughness on the electron avalanche

Avalanche computing with Garfield++

Computing time optimization:

1) Simulation of a catalog of 3000 Single Electron Responses

2) Event construction by randomly selecting 230 gain values in

the catalog

$$n_{e} = E_{Fe-55} / W_{Ar} = 5.9 \text{keV} / 26 \text{eV} \approx 230 \text{ e}^{-1}$$

-> Computing time divided by ~ 50.

Flat anode - Results

Roughness modelisation

Anode roughness modelisation → 1D sinusoidal oscillations :

- tx : oscillation length

- az : oscillation

amplitude

<u>cea</u>

Roughness influence on electric field

 $tx=10 \mu m$; $az=10 \mu m - tx=100 \mu m$; $az=30 \mu m$ $gap=100 \mu m$

Influence of tx on gain

For a given az, the gain is a function of tx

Peak effects

 $az/tx < 1 : low peakness \rightarrow low peak effect$

az/tx > 1: high peakness \rightarrow high peak effect

High peak effect → higher electric field near oscillation maximums

Rough anode vs. Flat anode

Performance comparison between a rough and a flat anode

Rough anode vs. Flat anode

az/tx=0.3, low peak effect influence

az/tx=1.5, peak effects increase the gain by a 1.4 factor

Influence of tx on energy resolution

 $tx >= avalanche width \rightarrow Bad energy resolution$

Influence of az parameter

For a given voltage and tx, energy resolution is a function of az:

Electrons travel a gap
which length ∈ [100–az;
100+az] µm
→ as oscillations are on x
axis, gain depends of x

Influence of grid shape

Which grid shape has the best energy resolution? Electronic transparency?

Square wires t=18µm

Cylindrical wires t=18µm

Woven and calendered wires t=26µm

Amplification gap=100µm Hole width=45µm

Woven wires

t=36µm

17

Influence of mesh shape

Gain

Mesh shape	Gain @ $E_{a}/E_{d} = 40$
	$E_a=40 \text{ kV/cm}$
Woven (t=36µm)	10370
Woven & calendered (t=26µm)	16790
Cylindrical wires (t=18µm)	20980
Square wires (t=18µm)	28530

Correlation between gain and mesh thickness: High thickness \rightarrow low gain Larger gain on square wires \rightarrow amplification on wire edges?

Influence of mesh shape

Transparency

Mesh shape	Transparency @ $E_a/E_d=100$ $E_a=40 \text{ kV/cm}$
Square wires (e=18µm)	90,5%
Woven (e=36µm)	95%
Woven & calendered (e=26µm)	97%
Cylindrical wires (e=18µm)	99%

Better transparency with thinner and smoother meshes

Influence of grid shape

Resolution

Mesh shape	Resolution @ Optimal point (FWHM)
Woven and calendered	11,5%
Square wires	10,2%
Cylindrical wires	9,8%
Woven	9,7%

Optimal point @ 200 for square and cylindrical meshes, @ 300 for woven meshes ($E_a=40 \text{ kV/cm}$)

No strong dependency of mesh shape on energy resolution

Conclusion

- Anode large scale oscillation ($tx > 100 \mu m \& az$
- $> 10 \mu m$) impact badly the energy resolution
- Defects with **high peakness** (az/tx > 1) **impact the gain** and therefore energy resolution
- Mesh shape has an impact on amplification and e⁻ transparency, but almost no effect on energy resolution

Perspective

- Further studies needed to compare with real detector data
- More realistic anode modelisation ? (2D roughness, effects of readout strips, ...)

backup

Influence of grid shape Computing method

Nearly the same method as the one used for surface condition study But with mesh transparency calculated by Garfield++

