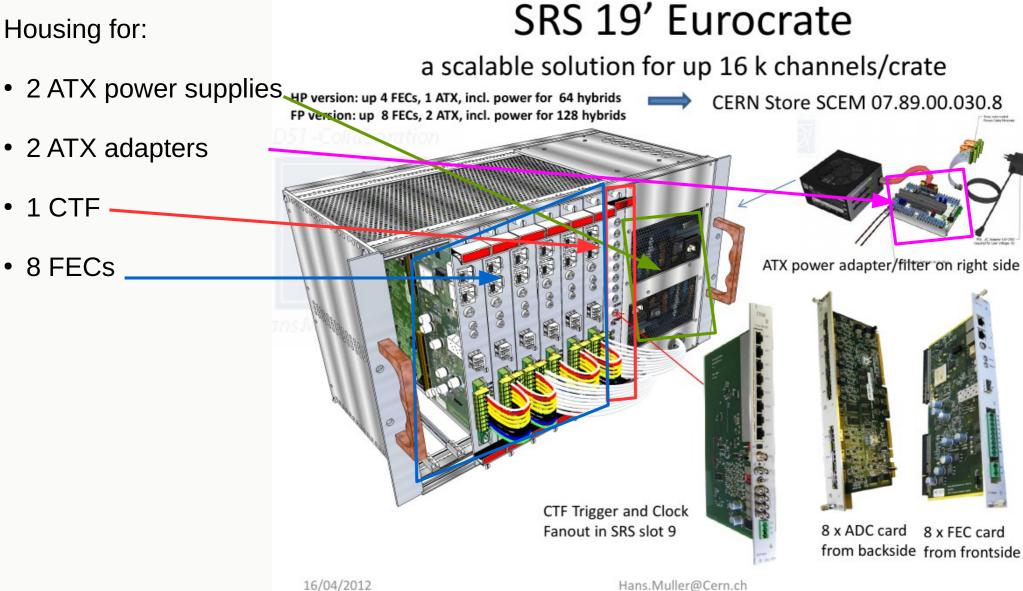


Assembly of a full SRS Eurocrate for 8 FECs and VMM readout

> Michael Lupberger (University of Bonn)


RD51 Collaboration Meeting, Santiago de Compostela 07.10.2020

Housing for:

Michael Lupberger

- Standard layout for APV25:
- older version of ATX adapter
- ATX power supply for APV25 needs
- Severe quality problems with SRS Eurocrate V1 => CERN store stopped sales
- => Since ~2015 obvious: need SRS Eurocrate V2 Hans plans:
- Account for APV25 \rightarrow VMM transition
 - SRS FEC FPGA frimware needs more power
 - Direct powering of VMM hybrids from Eurocrate
 - => revision of ATX adapter, stronger ATX power supplies

Eurocrate / ATX filter V2

Severe quality problems with SRS Eurocrate V1 : CERN store stopped sales

Eurocrate 2 features

- > 40 Ampere on 3V3 (for up to 64 APV hybrids)
- ATX filter V2 with integrated -5V PSU and resettable fuses
- CTF power connector
- SRU power plug

05/06/2016

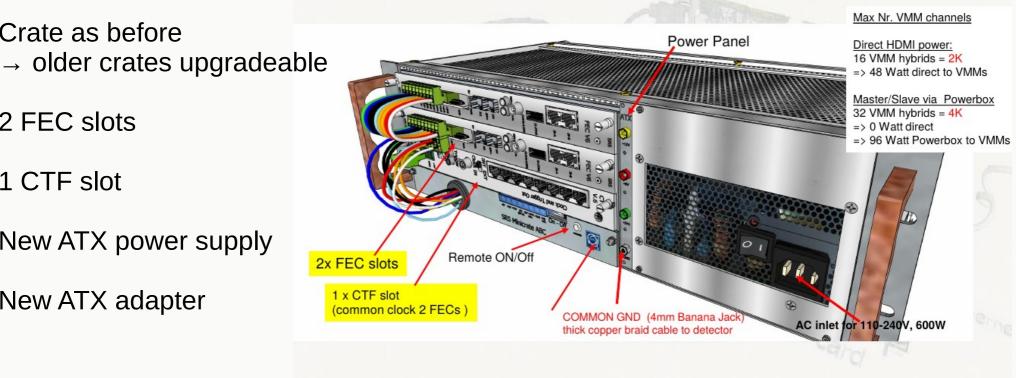
- 5 slots (4 x FEC + 1 x CTF)
- Aux. power panel (+12,+5,+3.3,-5 V- fused) with 2mm Banana jacks

Hans revised minicrate

New ATX power supply

New ATX adapter

Crate as before


2 FEC slots

1 CTF slot

First steps to revised SRS powering

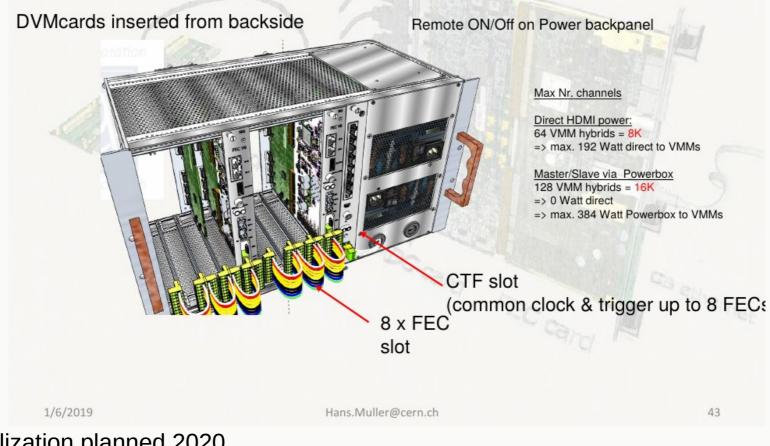
Minicrate ABC (VMM frontend)

slots for 2 FEC + 2 DVM, 1 CTF and direct HDMI power for VMM

1/6/2019

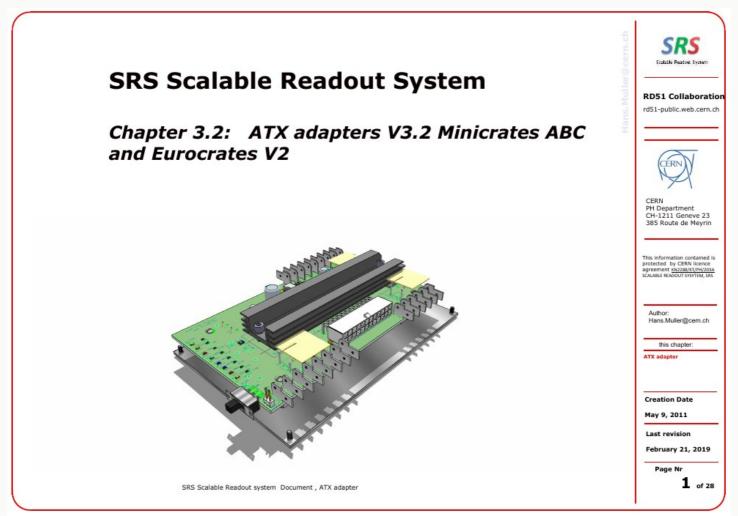
Hans.Muller@cern.ch

28


- => Minicrate ABC, 10 prototypes built commercial production started (NEOHM)
- => CERNstore

Eurocrate V2, 8 FEC slots prototypes built by Hans,

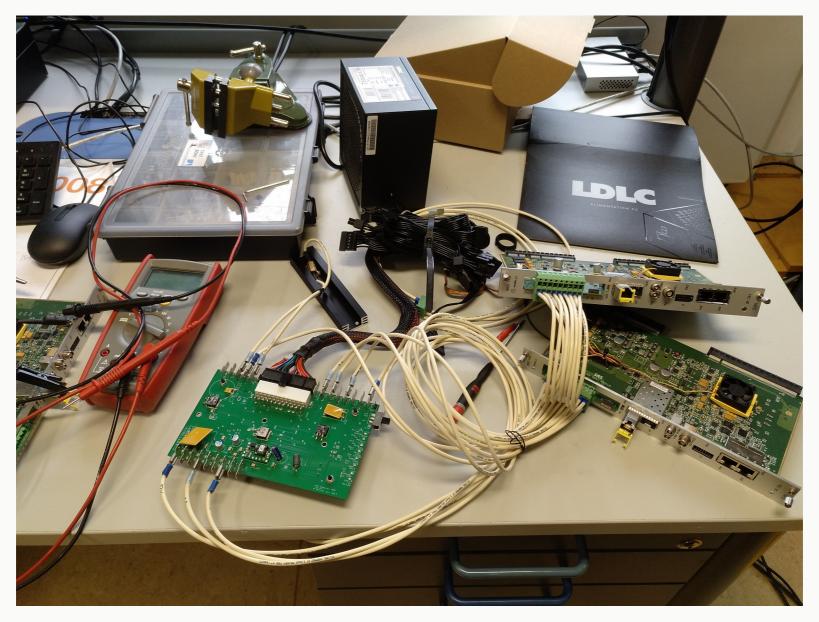
Eurocrate V2


for up to 8 FEC+DVM, 1 CTF and direct HDMI power for VMM

commercialization planned 2020


Minicrate ABC/Eurocrate V2 prototype => Detailed and clear manual by Hans

=> We were able to build our own Eurocrate V2



Designed for Minicrate ABC (power 2 FECs, 1 CTF, VMM hybrids)

Questions: sufficient to power 4 FECs, 1 CTF (and VMM hybrids)

UNIVERSITÄT BONN Testing of ATX adapter V3.2

- Procedure: measure voltages on FEC and on power board
- Connect one FEC after the other
- Compare to old ATX adapter
- 3 states:
- Idle (no FEC connected)
- FEC powered (FPGA code not loaded)
- FEC programmed (FPGA code running on FEC)

1st test with 0 \rightarrow 1 \rightarrow 2 FECs

- Main (qualitative) findings:
- VMM firmware draws SIGNIFICANTLY more power than APV firmware
- Only one power critical for FEC operation: "1V8" (supplies FPGA)

Measurements of 1V8 on FEC (FEC GND \rightarrow 1V8 on input)

Requirements on this voltage by FEC: 1V8 > 1.6 V

	Old ATX board 1V8 / V	New ATX board 1V8 / V
Idle	2.81	2.97
1 FEC connected	2.41	2.65
1 FEC programmed	1.82	2.07
2 FECs connected	2.17	2.51
2 FECs 1 programmed	1.60	2.10
2 FECs 2 programmed	Not possible	1.60

1V8 at the edge for 2 FECs running VMM firmware (APV firmware less demanding)

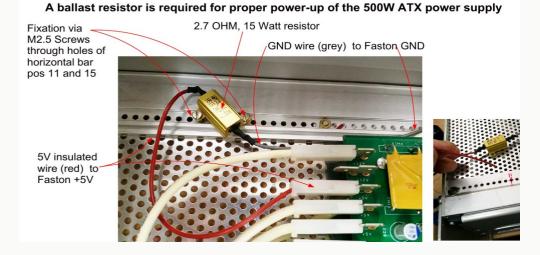
Current on 1V8 for 2 programmed FECs: 6.2 A

• 1V8 on ATX board: 1.78 V (1.6 V on FEC), FECs in crate \rightarrow better GND return helps

Exchange with Hans Muller:

• test at 5.6 A \rightarrow 1.98 V on FEC

Check components on ATX board:


- 3.3 V from ATX is 3.4 V at idle \rightarrow 2.9 V for 2 programmed FECs
- 3.3 V ATX sense soldered to filter input \rightarrow little effect (+0.05 V on FEC)
- Power diodes ok (1V8 from 3.3 V)
- filters ok
- solder ok

Check ballast resistors on ATX board:

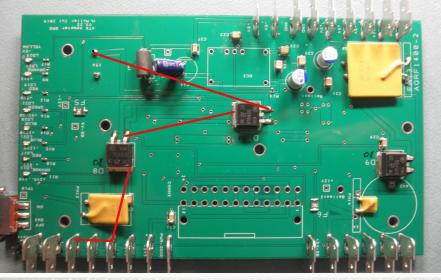
- 22 Ohm (10W) 12 V \rightarrow GND ok
- 2.7 Ohm (15 W) 5 V \rightarrow GND NOT OK

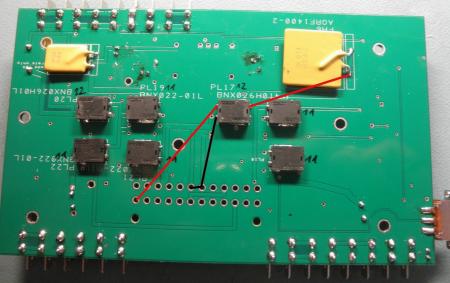
=> put 5V \rightarrow GND ballast correctly

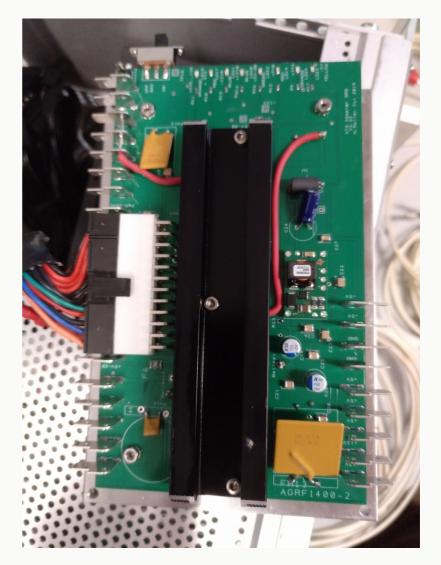
Minicrate: Ballast resistor (5V -> GND)

	Old ATX board 1V8 / V	New ATX board 1V8 / V (only 22 Ohm balast 12 V → GND)	New ATX board 1V8 / V (both ballast resistors)
Idle	2.81	2.97	2.85
1 FEC connected	2.41	2.65	2.66
1 FEC programmed	1.82	2.07	2.42
2 FECs connected	2.17	2.51	2.57
2 FECs 1 programmed	1.60	2.10	2.36
2 FECs 2 programmed	Not possible	1.60	2.14

=> 3.3 V from ATX stable even for two programmed FECs at 3.4 V


Check if other ballast resistor really needed: 22 Ohm ballast 12 V \rightarrow GND: programming of 2nd FEC not possible due to voltage breakdown


3rd test of ATX adapter V3.2: More FECs


UNI						
		Old ATX board 1V8 / V	New ATX board $1V8 / V$ (only 22 Ohm balast 12 V \rightarrow GND)	New ATX board 1V8 / V (both ballast resistors)		
	Idle	2.81	2.97	2.85		
	1 FEC connected	2.41	2.65	2.66		
	1 FEC programmed	1.82	2.07	2.42		
	2 FECs connected	2.17	2.51	2.57		
	2 FECs 1 programmed	1.60	2.10	2.36		
	2 FECs 2 programmed	Not possible	1.60	2.14		
	3 FECs connected			2.48		
	3 FECs 1 programmed			2.28		
	3 FECs 2 programmed			2.10		
	3 FECs 3 programmed			1.90		
	4 FECs connected			2.39		
	4 FECs 1 programmed			2.20		
	4 FECs 2 programmed			2.02		
	4 FECs 3 programmed			1.80 (2.0 on board)		
	4 FECs 4 programmed			Fuse triggered		

Changes on ATX board: (in addition to 3.3 V sense) improve critical PCB traces

07.10.2020

Effect of improved PCB traces:

- Fuse not triggered any more
- All 4 FECs can be programmed:
 <u>2.00 V</u> on FEC 4 (before: 1.80 V when 3 FECs programmed, 1 not programmed)
- 2.05 V on FEC 4 when FECs in crate (better ground return)

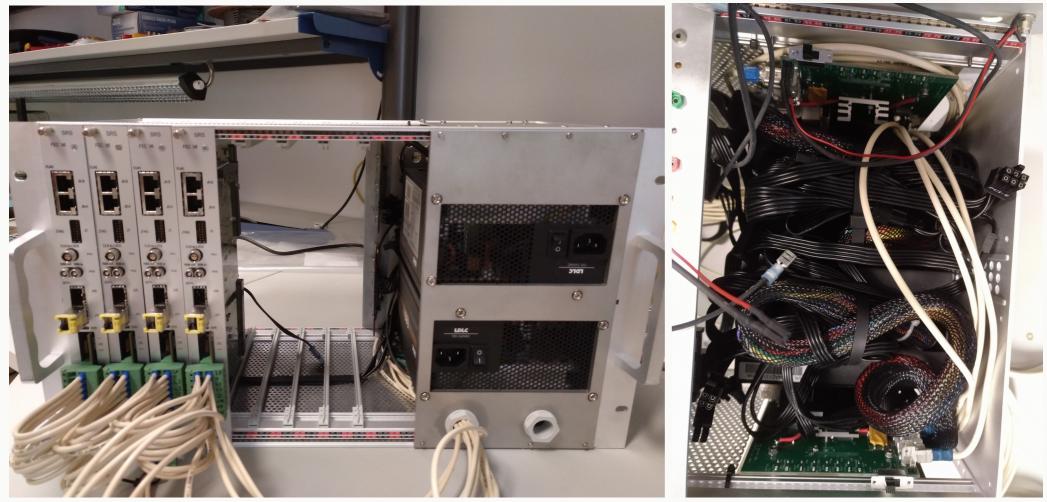
Power consumption on 1V8:

- 4 FECs idle: 3.1 A
- FPGA programmed adds 2.2 A / FEC => 4*2.2 + 3.1 = 11.9 A

1V8 Fuse designed for continuous 12A current (was probably triggered before)

=> <u>Conclusion: ATX adapter V3.2 (with some improvements) capable to power 4 FECs</u>

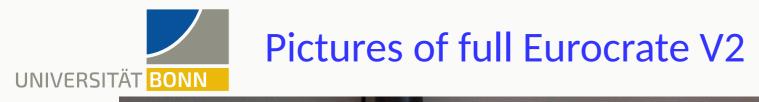
- => Feedback for Hans \rightarrow Improvements implemented:
- Thicker PCB traces
- Improve GND plane and contact to ATX connector
- All filters employ 15 A version

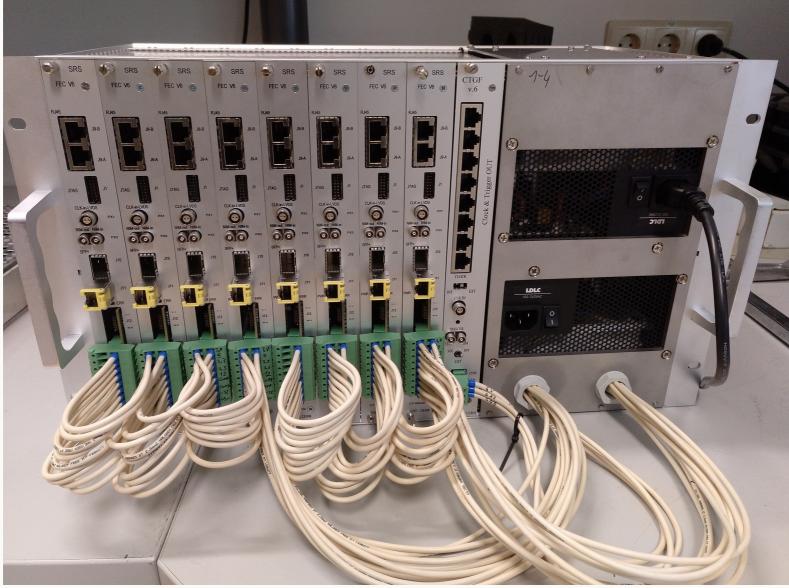

Todo: test if each ATX power supply can power 32 hybrids

ATX power supplies AUX monitor cards 4 FECs, 1 DVMM card in Eurocrate SATA power cables for direct VMM hybrid power via DVMM

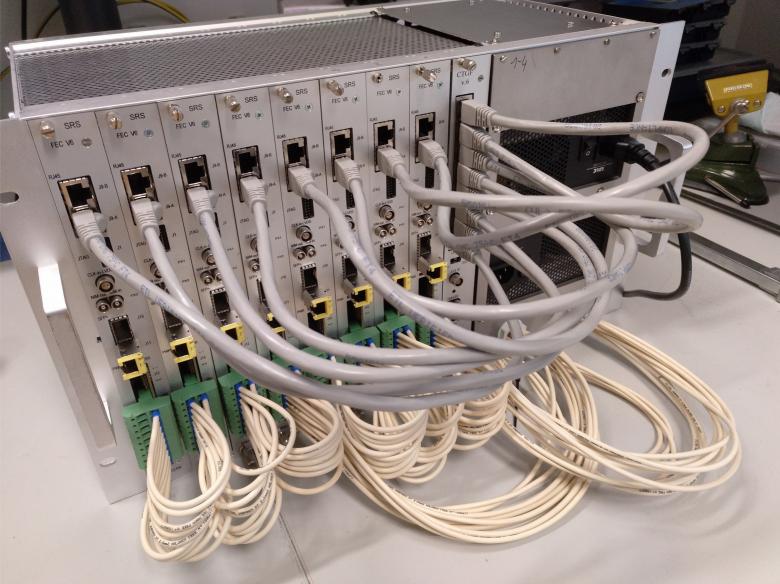
4 FECs, 1 DVMM card in Eurocrate First half of power cables installed

Inside before backplate mounting





2 FECs and FEC with DVMM SATA cable for all DVMMs in place


FEC and FEC with DVMM SATA cable for DVMM in place

Fully equipped Eurocrate v2 with 8 FECs and 1 CFT

UNIVERSITÄT BONN Pictures of full Eurocrate V2

Fully equipped Eurocrate v2 with 8 FECs and 1 CFT

Temperature of FPGAs:

72° C core temperature without cooling! (even with only 4 FECs in crate, of which only 1 FEC had a DVMM) \rightarrow expect much less air circulation with all DVMMs attached

=> active air circulation required

 \rightarrow put a rack fan unit on top of Eurocrate => 52° core temperature

COOLING required!

ATX adapter v3.2 (with small modifications) capable to power 4 FECs

Setup of Eurocrate V2 with new ATX power supplies and adapter board \rightarrow Great help from Hans (communication, manual)

THANKS HANS!

Fully equipped with FECs and CFT, all DVMM cards we have \rightarrow Cooling with rack fans required!

Next step:

Test powering of 32 VMM hybrids with 1 ATX supply and adapter card \rightarrow need to wait for more hybrids from late 2020 production