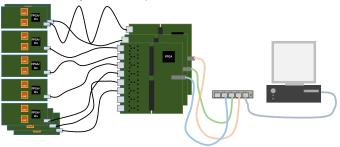
VMM3 Hybrid quality test system Results of 24 hybrids

Finn Jaekel

Physikalisches Institut Universität Bonn

RD-51 collaboration Meeting October 7, 2020



Introduction

- VMM3a: new readout chip for SRS
- Transition prototypes to mass production
- Large quantities to be produced
- Automated tests needed for quality assurance. Manual tests are slow
- VTC system from CERN limited to basic tests
- Classification of hybrids not possible with VTC

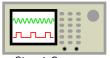
Hybrid ⇔ HDMI Cable ⇔ Adapter card+FEC ⇔ Ethernet ⇔ Switch ⇔ Ethernet ⇔ PC

[Implementation of the VMM ASIC in the Scalable Readout System, M. Lupberger]

Testing Setup

Minimal System

SRS Crate



Computer

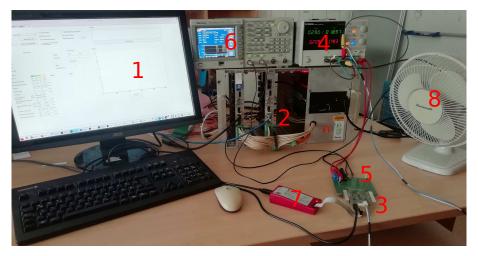
VMM Slow Control

- Read VMM monitoring Output
- Read VMM data
- Many more possible

Optional "extensions"

Signal Generator

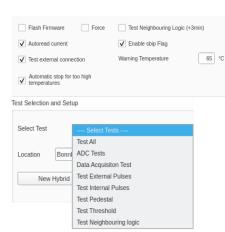
Power Supply



Multiplexer PCB

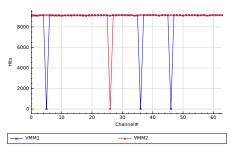
- Load Firmware
- Measure power consumption of hybrid
- Test connection detector plug ↔ VMMs incl. protection circuit

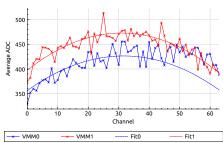
Testing Setup



1: VMM-Slow Control, 2: SRS, 3: Hybrid with provisional cooling, 4: Power supply, 5: Test pulse board, 6: Signal generator, 7: JTAG Programmer, 8: Cooling Fan

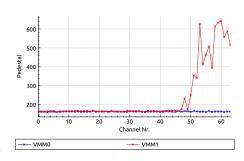
Testing Procedure


- Connect hybrid to the system
- Select optional settings
- Select test to perform
- Start test and relax for 2 min
- All measurements are performed automatically
- Tests use monitoring outputs of VMM and data acquisition of SRS



External Test Pulses

- Give 10 000 TestPulses on every channel of the hybrid
- Data acquisition records for each hit VMM number, channel number, ADC value, BCID +TDC values (timing)
- Analysis number of hits per channel and average ADC value for each channel



Pedestal Measurement

- Using VMM monitoring output measure pedestal (channel voltage w/o signal)
- After sending instructions to VMM, baseline needs to settle
- Measuring quickly can lead to bad baselines
- sbip flag should remove this completely
- For high gains and some hybrids still bad baselines happen
- only this system detects these basline faults

Single VMM-ASIC Classification

Use classification from CERN manual testing (done by Dorothea Pfeiffer):

Class	Description		
Α	All channels working		
В	One channel broken		
С	2-3 channels broken		
D	Many channels broken		
Е	VMM broken (e.g. when Hybrid has a short,		

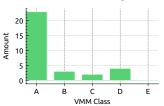
Table: Single VMM-ASIC classification

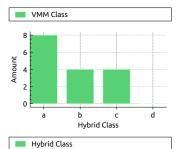
Hybrid Classification

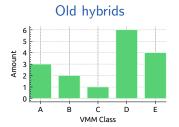
VMM class 1	VMM class 2	Hybrid class	Description
Α	А	а	Two good VMMs
Α	В	b	1-3 channels broken
A	С	b	on hybrid
В	В	b	
В	С	b	\leq 3 broken channels total
В	С	С	> 3 broken channels total
A/B/C/D			
A/B/C/D			
Е	Е	d	Hybrid broken

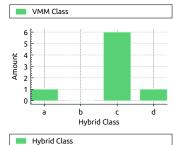
Table: Hybrid classification

Measurements




- Bonn:
 - Developement of system using 4 old production hybrids
 - Small scale test using 10 new production hybrids
- Mainz:
 - Test of 4 old and 6 new hybrids
- LSBB Rustrel, France:
 - Testing cancelled due to Corona-restrictions
 - Plan to remotely test 160 hybrids (hopefully in october, VTC-System from CERN needs to be delivered before using test system)
- All data put into database


Results of measurements



Yields

VMM Class	old Hybrids	new Hybrids	CERN
А	19 %	71 %	85 %
В	13 %	9 %	6 %
С	6 %	6 %	2 %
D	38 %	13 %*	2 %
Е		0 %	5 %

Table: Single VMM-chip yield

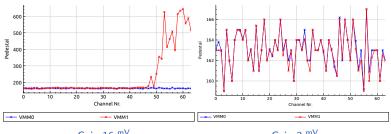

Hybrid class	old Hybrids	new Hybrids	CERN
а	12.5 %	50 %	74 %
b	0 %	25 %	14 %
С	75 %	25 %*	
d	12.5 %	0 %	2 %

Table: Hybrid yields

Do not panic!

- Old hybrids are bad due to them being old prototypes and being heavily tested
- new hybrids:
 - 3 of 4 VMM classified as D have bad pedestal:

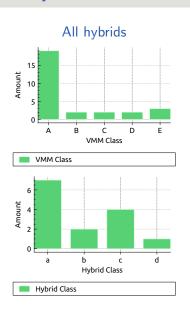
Gain $16 \frac{\text{mV}}{\text{fC}}$

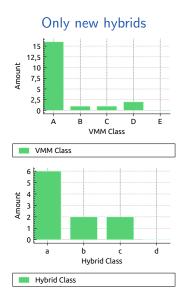
Gain 3 mV fC

- work perfectly fine at lower gains, all of the 3 would be classified to A
- more realistic: 69 % of hybrids classified as a, 6 % as c
- Pedestal measurement situation not applicable to normal application
- Lower sample size compared to CERN measurement
- CERN results confirmed (more or less)

Conclusion

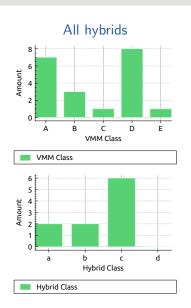
- System working now, ready to be used
- Other hardware (Signal generators, Power supplies) easy to implement
- 24 Hybrids (16 new, 8 old) were tested successfully
- Yield of sample lower than CERN results, but explained by more sensitive Pedestal measurement

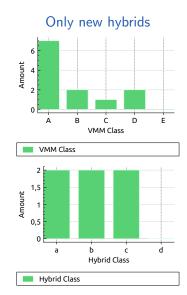

Thanks for listening



Questions...?

Bonn Hybrids





Mainz Hybrids

