Universidade de São Paulo

TSP

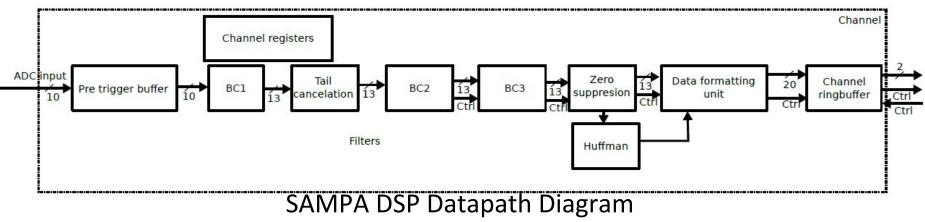
SAMPA SRS Integration Status Report

SAMPA TEAM: Tarciso Alvim Martins, Cesar Giacomini Penteado, Bruno Sanches, Hugo Daniel Hernandez, Marco Bregant, Marcelo Gameiro Munhoz, Wilhelmus Van Noije

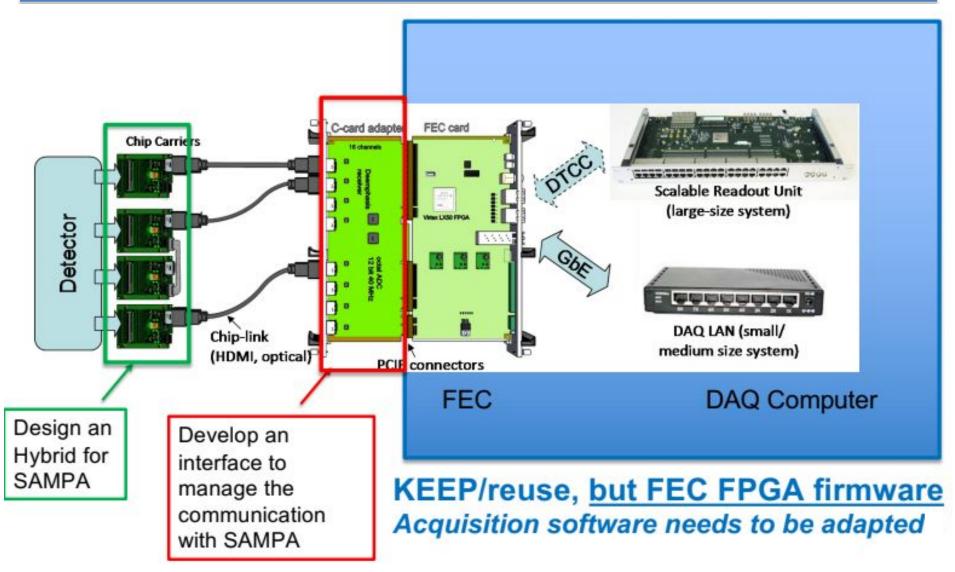
October 7th, 2020

SAMPA Overview

- TSMC CMOS 130nm, 1.25V technology.
- 32 Channels, Front-end + ADC + DSP.
- Positive and negative polarities with 2 analog front-end modes:
 20 or 30 mV/fC with 160 ns shaping time.(Sensor Cap: 12 25 pF)
 - \circ 4 mV/fC with 300 ns shaping time. (Sensor Cap: 40 80 pF)
- ADC: 10-bit resolution, up to 18.5 MSPS. A new SAMPA ாா Peaking time, Sensitivity and Polarity control version with 20/30 mV/fC and 160/80 ns 12C shaping time was IN[0:15] **CSA** ADC Shaper recently designed and tested on silicon. V600 DSP Bandgap Bias V450 V750 IN[0:15] **CSA** ADC Shaper SAMPA Block Diagram Peaking time, Sensitivity and Polarity control

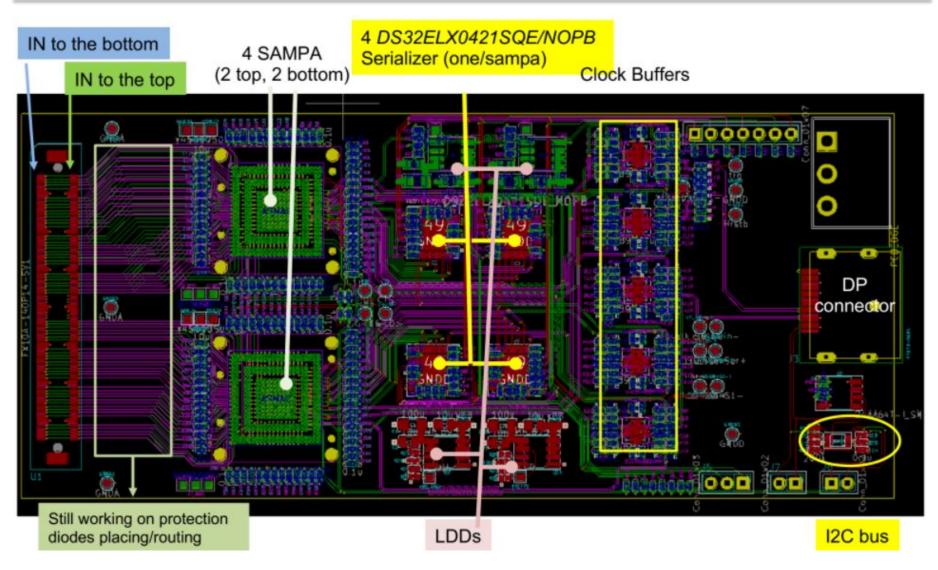


SAMPA SRS Integration Status Report


SAMPA Overview

- DSP functionalities:
 - I2C Configurable.
 - Pedestal Memory.
 - Pre-trigger buffer.
 - Baseline correction.

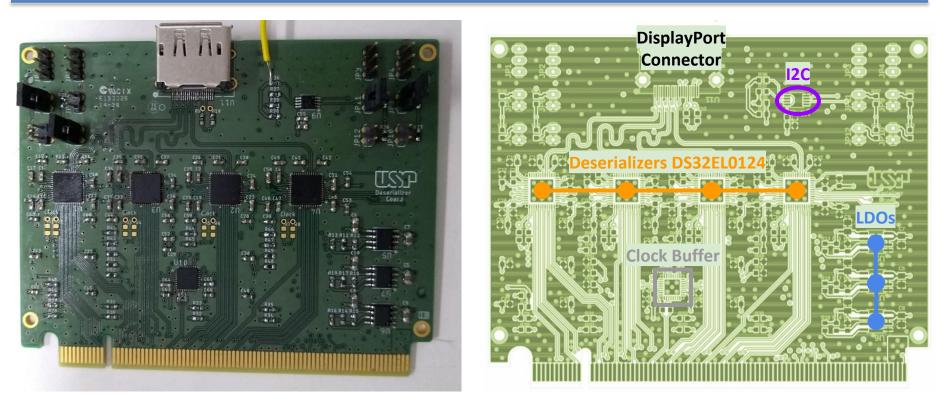
- Tail cancelation.
- \circ Zero-suppression.
- Huffman compression.
- Individual operations per channel.
- Triggered or continuous acquisition modes.
- Data transmission: up to 11 e-links @ 320 Mbps, SLVS.


SRS and how to fit SAMPA in

The Prototype

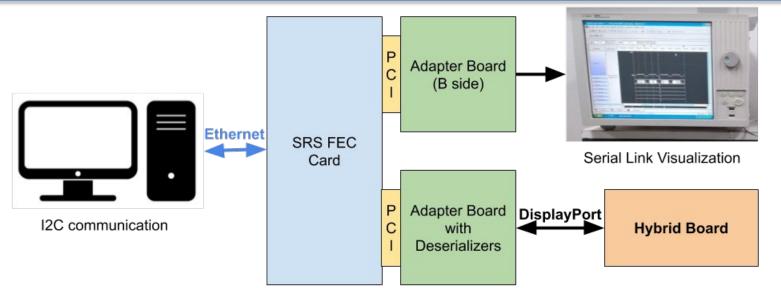
- Hybrid Board
 - Needs to read 128 channels (Each SAMPA reads 32).
 - $\circ~$ As close as possible to the final board.
 - But still a prototype version (testpoints + fail-safe).
 - How to send data from SAMPA to SRS?
 - SAMPA chip in default mode (Plug and Play)
 - 4 eLinks each -> 4 SAMPAs = 16 eLinks.
 - Serializer DS32EL0421 4 eLinks to 1 High Speed Link.
 - HDMI vs DisplayPort (4 vs 5 Differential Pairs)
 - 4 High Speed Links (1.2 Gbps) + 1 Clock (300 MHz).
- Adapter Board
 - As simple as possible, interface SRS (FECv6) and Hybrid.
 - Deserializers + DisplayPort Connector.

Prototype Hybrid Board


Prototype Hybrid Board

- DisplayPort connector 5 DIFF lanes + 4 SE lanes.
- Serializer: DS32EL0421 Translates 4 SAMPAs e-links to 1.
- I2C communication for configuration (SRS Slow Control).

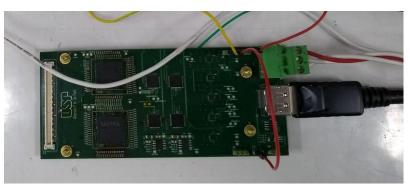
SAMPA TEAM


Prototype Interface board

- DisplayPort Connector 4 data links + 1 CLK + RST + TRG + I2C .
- Deserializer : DS32EL0124 Recover the 4 SAMPA e-links.
- Only 1 Hybrid for now (16 ADIFFs for SAMPA serial Links + 1 Clock + 4 recovered clocks) at PCI connector.

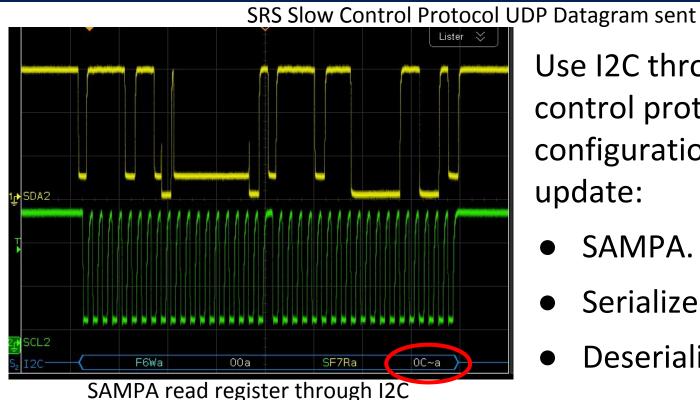
SAMPA TEAM

Testbench


- SRS FEC Card Decoder of data and manager of interfaces.
 - A side Adapter board for Hybrid.
 - B side "Breadboard" for firmware debug (Logic Analyser).
- Ethernet for SRS slow control and data reception.
- Logic Analyser to help with our debug.
- FPGA is responsible for Decoding SAMPA signals and manage the different interfaces (Ethernet, I2C, Clock, Trigger, Reset).

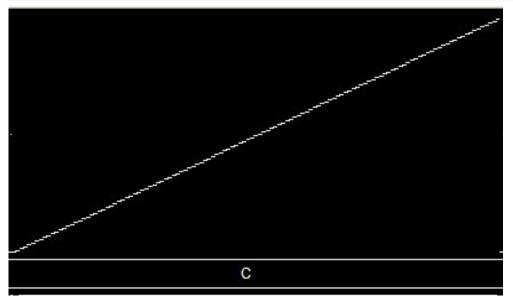
Testbench

Some adaptations:


- Recovered clocks in AIOs rerouted.
- External auxiliary power supply for lower power dissipation on Hybrid.
- I2C SCL rerouting on DisplayPort connector.

Results (Slow Control)

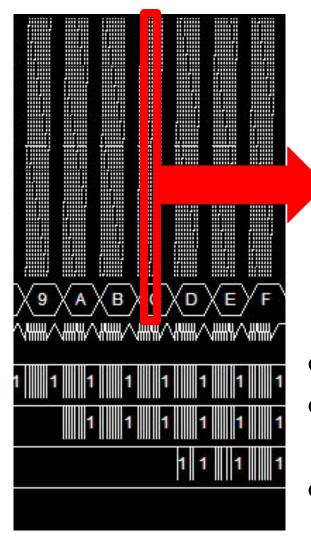
PS C:\Arquivos de Programas\PacketSender> .\packetsender -b 6007 -w 500 -u 10.0.0.2 6024 UDP (6007)://10.0.0.2:6024 80 00 00 00 FF FF FF FF BB AA FF FF 00 00 00 00 F6 F8 00 00

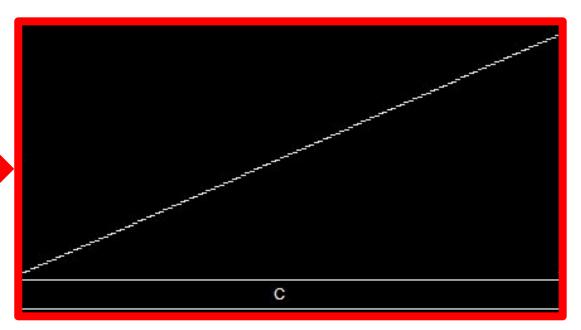

From: ::ffff:10.0.0.2, Port:6024 Response Time:08:59:43.579 Response HEX:00 00 00 00 FF FF FF FF BB AA FF FF 00 00 00 00 00 00 01 00 00 00 00

Use I2C through SRS slow control protocol for configuration & status update:

- SAMPA.
- Serializer.
- Deserializer.

Results (Serial data links)


Data visualization for each channel on Logic Analyzer


- 1. Load SAMPA memory with one ramp for each channel (SRS Slow Control).
- 2. SAMPA Data >> SERDES >> SRS FEC.
- 3. Data visualization with Logic Analyzer System after decoding on FEC.

Logic Analyzer System

Results (Serial data links)

- Data from all 128 channels of one Hybrid.
- Number of each eLink for the data.
 - Each eLink contains 8 channels.
- SAMPA eLink synchronization flags.
 Helpful for SERDES config.

Results (Serial data links)

7F		Bybrid Data	
eLink #	<u>123</u>	(5) 000000000000000000000000000000000000	B C D E F
Y I	F SY	<u>'NC informatio</u>	
	1	1 1 1	
	1	1	
		1	1 1 1 1
		1	

Next Steps

- Test the Hybrid boards with input signals at HRS.
- Evolve prototype boards to beta version of one Hybrid per SRS FEC Board.
- Plans for the future: Four Hybrids in one FEC Board.
 Currently in development:
- Send SAMPA data through Ethernet.

Under investigation:

- Automatic SAMPA Serial Links Synchronization.
- How to deal with the maximum data throughput:
 - 300 Mbps x4 (eLinks) x4 (SAMPAs)

=> 4.8 Gbps per Hybrid. (x4)

Conclusions

- A prototype (close to final) Hybrid Card with four SAMPAs was designed, fabricated and tested.
- Control of Hybrid Card is performed through SRS Slow Control Protocol (minor adjustments I2C restart).
- SRS FEC Card generates SAMPA control signals (CLKs, TRG, RST).
- SERDES pair is able to handle SAMPA packets.
- SRS FEC Card is capable of reading and decoding four SAMPAs simultaneously (expected to be independent of trigger rate).

Universidade de São Paulo

TSP

SAMPA SRS Integration Status Report

SAMPA TEAM: Tarciso Alvim Martins, Cesar Giacomini Penteado, Bruno Sanches, Hugo Daniel Hernandez, Marco Bregant, Marcelo Gameiro Munhoz, Wilhelmus Van Noije

October 7th, 2020