CMS Phase II Beam Pipe

Temporary support at 3.5 m_ Bake-out position

Ali Karaki

CMS Engineering and Integration Center

Introduction

Attached to HCAL with 4 screws M8 per side

- Temporary support used during Bake-out to lock the displacement in Z at 3.5 m;
- Same structure was used during LS1;
- Higher axial forces are expected during Run 3;
- Rebuilding the support with reinforcements on the welded joints to withstand the new forces;
- **Assembly on Smarteam** ST1248611_01.

Axial forces at 3.5 m

<u> </u>	
Axial force at 3.5 m-Bake-out Run3	Value
Thermal expansion central BE	+55 N
Thermal expansion central AL	+56.7 N
Thermal expansion End-Cap	-69.54 N
Thermal expansion HF-CT2	-47.8 N
Pressure Thrust Force DBA	-254 N
Pressure Thrust Force EW bellow	+1107.4 N
Pre-extension DBA	-47.5 N
Pre-extension EW	+45.6 N
Cone 1	+2780.2 N
Cone 2	-2532 N
Total	1004 1 N

Detailed calculation report on EDMS: CMS-I-EN-0003

- For Run 3, during bake-out, an axial force of around 1.1 KN is expected at the fix point at 3.5 m;
- This value was around <u>300 N</u> during Run 2.

Numerical Model

• Support material: Aluminium alloy

• HCAL: Brass

• Bolts: Stainless Steel A2-70

	Density [Kg/m3]	Young's modulus [GPa]	Yield strength [MPa]	Shear Strength [MPa]
Aluminium EN-AW 6060 T6	2700	71	190	207
Stainless Steel Bolts (A2-70)	7750	193	450	350
Brass	8640	103	125	200

Contacts:

frictional contact with 1.05 friction coefficient between the different components; - Line to surface bonded (pure penalty) contact at the welded seams.

- Aluminium to Aluminium

675.00

225.00

Loads & Boundary conditions:

- Own weight of the support;
- Bolts Pretension [70% of the yield strength];
- Fixed support at the HCAL plate;
- Axial force on the collar 1.1 KN.

Weld assessment

- The stress in the most loaded welds is assessed following the EN 1999-1-1:Eurocode 9;
- A uniform distribution of the stress is assumed on the throat section of the weld, leading to the normal stresses and shear stresses shown as follows:

$$\sigma_{Eqv} = \sqrt{{\sigma_{\perp}}^2 + 3({\tau_{\perp}}^2 + {\tau_{||}}^2)} \le \frac{f_w}{\gamma_{Mw}}$$

- f_w –Is the characteristic strength of weld metal, adopted value equals **160 MPa** for EN AW-6060, and 5356 as filler metal;
- $\gamma_{\rm Mw}$ Is the partial safety factor for welded joints, adopted value equal **1.25**.

							<u> </u>	
Weld Number	Throat area A [mm2]	Fσ⊥(Y) [N]	Fτ⊥ (X) [N]	F τ// (Z) [N]	σ⊥ [Mpa]	τ⊥ [Mpa]	τ// [Mpa]	Weld stress [Mpa]
1.1	105	21.4	17.3	72.0	0.16	0.20	0.69	1.86
1.2	175	95.9	58.0	359.1	0.33	0.55	2.05	5.46
1.3	105	126.8	119.4	239.9	1.14	1.21	2.28	6.87
1.4	175	889.9	591.8	362.3	3.38	5.09	2.07	12.82
2.1	175	63.0	30.3	414.5	0.17	0.36	2.37	6.19
2.2	105	81.2	37.9	222.0	0.36	0.77	2.11	5.69
2.3	175	154.4	95.4	357.9	0.55	0.88	2.05	5.66
2.4	105	144.6	37.4	215.9	0.36	1.38	2.06	5.80
3.1	175	15.3	9.1	439.3	0.05	0.09	2.51	6.52
3.2	105	1318.7	765.2	226.6	7.29	12.56	2.16	27.29
3.3	175	13.5	33.7	337.6	0.19	0.08	1.93	5.04
3.4	105	1715.7	538.3	194.4	5.13	16.34	1.85	28.31

the welds.

The failure criterion is **128 MPa**; Minimum safety factor of 4.5 on

Stresses and Deformation

Aluminium Brass (HCAL)

Stress on the bolts

Bolt size	M8
Effective length of engagement [Le]	10 mm
Brass shear strength [τ]	200 MPa
Tensile stress area of the bolt [At]	36.6 mm2
Pitch diameter [do]	6.8 mm

- To make sure that the thread will not strip in the soft material (brass), the shear strength [F] of the thread is evaluated;
- The Shear strength [F] is equal to the shear area [As] times the shear strength [τ] of the brass;
- **As**= 0.5π do Le = 106.8 mm2.
- $F = \tau As = 21.3 KN.$

M8 threaded

- Therefore, the maximum tensile stress that can be taken by the thread is:
 σ=F/At= 581 MPa.
- The pretension applied on the bolts is 315 MPa < 581 MPA

Update on Supports at 6.8 m and 16 m

The 6.8 m support is installed on top of YB+/-2.

- The drawings of the support at 16 m are under approval on CDD, LHCVH5__0175 to LHCVH5__0200.
- Assembly drawing of the support: LHCVH5__0191, and for the shielding: LHCVH5__0192.
- Calculation report on EDMS: CMS-I-EG-0007
- Working in collaboration with the engineering department on a unified version of the technical specifications, for the VAX support and the BP support at 16 m.

