

Results on Higgs to fermions decays

Tao Wang

University of Science and Technology of China

on behalf of the ATLAS and CMS collaborations

22nd, Nov. 2021, CKM 2021 @ University of Melbourne

Introduction

- In the Standard Model, Higgs-fermion Yukawa interaction generates mass for fermions
- Large scale in fermion masses is a mystery (one of hierarchy problems in SM)
- The Higgs sector of the Standard Model Lagrangian is the **origin of CKM matrix**, so measuring Yukawa coupling may hint on CKM matrix

Overview

- All Higgs to third generation fermion couplings have been observed
- Second generation fermion Yukawa coupling searches progressed well, with evidence on H→μμ and H→cc upper limit set to O(10) level
- All measured results are compatible with SM predictions

Tao Wang (USTC)

3

Apparatus (ATLAS, CMS)

ATLAS (left) and CMS (bottom) are two multi-purpose detectors at the Large Hadron Collider which target Higgs/EW physics, and search for new physics

Data and Performance

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC

200

LHC Delivered: 192.99 fb⁻¹

CMS Recorded: 178.16 fb⁻¹

150

150

150

150

Data taking: Tremendous efforts from LHC, detector teams to make the data collection smooth

Physics successes owing to precise understanding of e, μ , jets, E_T^{miss} , and tagging of heavy-flavor jets

percent-level precision achieved in many

H→bb

- Probe the Higgs coupling to third generation bottom type quark
- Observed mainly with VH production channel (pp \rightarrow VH, H \rightarrow bb)
 - \sim 5 σ detection at both ATLAS and CMS in 2018
- B-jet tagging is one key factor

H→bb

W, Z bremsstrahlung

WW, ZZ fusion

g g fusion

EPJC 81, 178 (2021)
PRL 121, 121801 (2018)
EPJC 81, 537 (2021)
JHEP 03, 268 (2021)
PRL 120, 071802 (2018)
PRD 92, 032008 (2015)

4%

7%

88%

VBF

ggF

- Significance has been improved for VH resolved channel
- VH boosted channel has been explored and is progressing
- VBF channel has gained improvement and reached evidence

		ATLAS	CMS	
VH	resolved	6.7σ New!	4.8σ	7 TeV+8 TeV+41.3 fb ⁻¹ 13 TeV
	boosted	2.1σ New!	-	
VBF	-	2.9σ New!	2.2σ	19.8 fb ⁻¹ and 18.3 fb ⁻¹ 8 TeV
ggF	boosted	-	1.5σ	35.9 fb ⁻¹ 13 TeV
combined	-	-	5.6σ	7 TeV+8 TeV+41.3 fb ⁻¹ 13 TeV

*: 139 fb⁻¹ 13 TeV

Highlights: H→bb boosted

"Boosted" bb pairs → merged large-R jets new physics sensitivity!

- Probe H→bb at TeV scale

Search H→bb out of enormous backgrounds Differential measurement in pT bins shows good agreement with SM

Highlights: Probing VBF production channel

VBF: 2.9σ significance

First search for (H→bb)+γ utilizing photon to largely suppress multijet background

10

$H \rightarrow \tau \tau$

- Probe the Higgs coupling to third generation lepton tau
- First observed in ATLAS+CMS combination with Run 1 data
- τ lepton need to be identified properly
 - electron/muon for leptonic decay
 - jet tagging/ML for hadronic decay

	ATLAS 139 fb ⁻¹ 13TeV	CMS 36 fb ⁻¹ 13TeV
VH	~50%	~100%
VBF	20%	30%
ggF	30%	90%
Combined	10%	25%

H→ττ cross section measurement precision

$H \rightarrow \tau \tau$

Detailed measurements have been performed

ATLAS-CONF-2021-044

Differential measurement result is compatible with SM to NNLO

Compatible with SM in all STXS bins

Tao Wang (USTC)

13

Highlight on study of CP structures

new physics possibility

• Htt channel is one of optimal channels for **CP studies** in pp collisions

matrix-element variable Events / 1 **ATLAS** ☐ VBF H \sqrt{s} = 13 TeV, 36.1 fb⁻¹ $\mu = 0.73$. $\tilde{d} = -0.01$ $au_{\rm had} au_{\rm had}$ SR Misidentified τ Other bka //// Uncertainty CP even-odd mixing Data / pred. 15 PLB 805 (2020) 135426 Optimal Observable EFT CP-odd parameter [-0.090, 0.035] at 68% CL [-0.035, 0.033] expected

VBF events with CP-odd sensitive

Inclusive events looking at τ decay planes with Machine learning

Odd-even Mixing angle constrained to -1+/-19° at 68% CL 0+/-21° expected

 $H\rightarrow cc$

Run: 303892

Event: 4866214607

2016-07-16 06:20:19 CEST

$H\rightarrow cc$

- Probe the Higgs coupling to second generation up type quark charm
- Challenging part: charm tagging

distinguish charm jet bottom jet

Features:

- impact parameters
- secondary vertices
- topology
- •

Working point achievable:

c eff: 20-40%, b rejection: ~10,

light rejection: ~50

$H\rightarrow cc$

VH production channel is the main channel explored so far

CMS: partial dataset, ML analysis

Upper limit on μ is 70 at 95% CL

ATLAS: full dataset, cut-based analysis

Upper limit down to 26 at 95% CL Diboson as validation with 3-5 σ significance Constraint on $|y_c/SM| < 8.5$

Η→μμ

$H\rightarrow \mu\mu$

- Probe the Higgs coupling to second generation lepton muon
- Signature is clear, treatment for enormous backgrounds needed

To improve sensitivity:

- Signal categorization optimization
- Machine learning technique
- Ultrafast simulation allowing generating billions of events for background characterization

Highlight: 3σ evidence for $H \rightarrow \mu\mu$

Signal categorization

PLB 812 (2021) 135980

CMS evidence

ATLAS achieved 2σ, CMS achieved 3σ. Combined, they can offer a strong 3σ evidence

Rare Higgs decays

• Rare channels for bottom and charm: $H \rightarrow J/\psi$, $\psi(2s)$, $Y(ns) + \gamma$

Current upper limit on branching ratios: $^{\sim} 10^{-3} - 10^{-4}$ (SM prediction $^{\sim} 10^{-6}$) less sensitive than direct method so far

21

Rare Higgs decays

• Rare channels for strange: $H \rightarrow \rho$, $\phi + \gamma$

Current upper limit on branching ratios: $\sim 10^{-3} - 10^{-4}$ while SM prediction for branching ratio is $\sim 10^{-5} - 10^{-6}$

Summary

- Higgs couplings to 3rd-generation fermions are well established. All measurements are consistent with the Standard Model predictions
- Large branching fractions to b quarks make it possible to probe high-p[⊤] Higgs production
- Search for $H \rightarrow \mu\mu$ decays gained evidence. As for $H \rightarrow cc$, the upper limit has gained significant improvement and has been set to 26 x SM prediction
- Higgs decaying to very rare channels have been searched for. No obvious deviations were found
- The searches have been done with diversity to reach most optimal results for each generation
- More detailed probe underway and to be followed up with LHC Run-3, and with HL-LHC

Thanks for listening!

Backup

$H\rightarrow \mu\mu$ categorizations

The multivariate ggF+VBF classifiers used in the analysis for (a) 0-jet events, (b) 1-jet events, (c)+(d) 2-jet events, all restricted to the region $m_{\mu\mu}$ = 120–130 GeV

Tao Wang (USTC)

26

charm-tagging taggers

- Input variables used by the MV2 and the DL1 algorithms:
 - IP2D/IP3D
 - $log(P_b/P_{light})$
 - $\log(P_b/P_c)$
 - $\log(P_c/P_{\text{light}})$
 - SV1
 - JetFitter
 - JetFitter c-tagging

