

Rare top decays (FCNC, CPV) at CMS and ATLAS

International Workshop on the CKM Unitarity Triangle Online workshop, 22-26 Nov 2021

Yu-Wei Kao on behalf of the ATLAS and CMS Collaborations

National Taiwan University

Princes Bridge, Melbourne, Australia Photo source: https://www.tripsavvy.com/best-time-to-visit-melbourne-4774145

Introduction

• Standard model (SM) has been very successful at explaining experimental data

• Some unanswered questions

- Nature of dark matter, matter-antimatter asymmetry, origin of flavor, neutrino mass, etc.
- Some hints from SM deviations in the flavor sector

• Why rare top quark processes?

- Large integrated luminosity proton-proton collision data collected by ATLAS and CMS
- Certain physics in top sector is relatively less explored (ex. top CP property)
- Various beyond SM theories (BSM) have predictions (ex. top flavor-changing neutral currents)

• Covered in this talk

- Search for top flavor-changing neutral currents (top FCNC)
- Search for top charged lepton flavor violation (top CLFV)
- Search for top CP violation (top CPV)

Top FCNC

Flavor-changing neutral currents (FCNCs)

• FCNCs in SM

- Forbidden at tree-level
- Heavily suppressed due to GIM mechanism
 - BF(t \rightarrow Hu) ~ $\mathcal{O}(10^{-17})$ and BF(t \rightarrow Hc) ~ $\mathcal{O}(10^{-15})$
 - Well below LHC sensitivity!
- Any observation of FCNCs would be an unambiguous sign of new physics!

• FCNCs in BSM

- ► In general, lead to enhanced t→qM FCNC interactions
 - $\quad M \in \{\gamma,\,g,\,Z,\,H\},\,q \in \{u,\,c\}$

	SM	QS	2HDM	FC $2HDM$	MSSM	₽ K SUSY
$t \rightarrow uZ$	8×10^{-17}	$1.1 imes 10^{-4}$	_	_	$2 imes 10^{-6}$	$3 imes 10^{-5}$
$t \to u \gamma$	$3.7 imes 10^{-16}$	7.5×10^{-9}	_	_	$2 imes 10^{-6}$	1×10^{-6}
$t \to ug$	$3.7 imes 10^{-14}$	1.5×10^{-7}	_	_	8×10^{-5}	$2 imes 10^{-4}$
$t \to u H$	$2 imes 10^{-17}$	$4.1 imes 10^{-5}$	$5.5 imes 10^{-6}$	_	10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	$1.1 imes 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 imes 10^{-6}$	$3 imes 10^{-5}$
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	$2 imes 10^{-6}$	1×10^{-6}
$t \to cg$	4.6×10^{-12}	$1.5 imes 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-8}$	$8 imes 10^{-5}$	$2 imes 10^{-4}$
$t \rightarrow cH$	$3 imes 10^{-15}$	$4.1 imes 10^{-5}$	$1.5 imes 10^{-3}$	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Aguilar-Saavedra, ACTA Phys. Pol. B 35(2004) 3

Search for the FCNC tHq $H \rightarrow \gamma \gamma$

- Search for $t \rightarrow Hq$ (q=u, c), $H \rightarrow \gamma \gamma$
- Single top production (ST) and top decay (TT)
- Signal regions: 2 photons, 100<M_{γγ}<180 GeV
 - ► leptonic: \geq 1 jet, \geq 1 lepton
 - hadronic: \geq 3 jet, \geq 1 b-jet
- Backgrounds
 - resonant: ttH, ggH, VH, VBF, tH, bbH
 - non-resonant: $\gamma\gamma$ +jets, (γ)+jets, tt+ $\gamma(\gamma)$, V+ γ
- Strategy
 - BDTs: {u, c}⊗{had, lep}⊗{res, non-res bkg}
 - 7 categories defined by BDT scores
 - 14 m_{γγ} distributions to fit

Single top production

top-quark pair decay

BDTs meant for suppressing non-resonant BG (left) and resonant BG (right)

Search for the FCNC tHq $H \rightarrow \gamma \gamma$

• Signal modeling

$$\mathcal{L} = \sum_{q=u,c} \frac{g}{\sqrt{2}} \bar{t} \kappa_{Hqt} \left(\frac{F_{Hq}^{L}}{F_{Hq}} P_{L} + \frac{F_{Hq}^{R}}{F_{Hq}} P_{R} \right) qH + h.c.$$

g: Weak coupling constant
_{KHqt}: Effective coupling constant

- Dominant systematic uncertainties:
 b-tagging and γ identification
- Data compatible with absence of signal
- Upper limits on the signal cross sections are translated to the strength of the tqH anomalous couplings and related branching fractions
- 95% CL upper limits:
 - ► B(t→Hu) < 0.019 % (exp. 0.031%)
 - ► B(t→Hc) < 0.073 % (exp. 0.051%)

The most stringent limits to date in tHq FCNC searches

t→Hu

t→Hc

Search for the FCNC tHq H→bb

- Search for $t \rightarrow Hq$ (q=u, c), $H \rightarrow bb$
- Single top production (ST) and top decay (TT)
- Signal regions: 1 lepton, \geq 3 jets, \geq 2 b-jets
- A deep neural network is used to associate the reconstructed objects to the generator-level final state
- BDTs are used to distinguish the signal from the background events

CKM 2021: Rare top decays (FCNC,CPV) at ATLAS and CMS

Search for the FCNC tHq H→bb

- All bjet-jet categories are combined
 - The b3j4 category has the highest sensitivity for both Hut and Hct couplings
- No significant excess with respect to the SM background expectations
- 95% CL upper limits:
 - ► B(t→Hu) < 0.079 % (exp. 0.11%)
 - ► B(t→Hc) < 0.094 % (exp. 0.086 %)
- Significant improvement with respect to the early run-2 search (JHEP 06 (2018) 102)
 - Full Run 2 luminosity
 - Advanced multivariate analysis techniques to perform the event reconstruction

Search for the FCNC tHq interaction

- Search for t \rightarrow Hq (q=u, c) FCNC decays in t \overline{t} events
- H→bb
 - Single lepton, \geq 4 jets (2 b-tagged)
 - Backgrounds: tt + HF/LF
 - Data-driven estimate for non prompt leptons
 - Event classification on the jet $(4, 5, \ge 6)$ and b-tagged jet $(2, 3, \ge 4)$
 - Likelihood-based discriminant
- Η→ττ
 - Single lepton (τ lep, τ had), di-tau (τ had, τ had), \geq 3 jets (1 b-tagged)
 - Backgrounds: fakes (tt), Z→ττ
 - Data-driven estimate for fake τhad
 - Event classification on the jet multiplicity $(3j, \ge 4j)$
 - BDT discriminant

Search for the FCNC tHq interaction

- Results are combined with
 - ► H→γγ [JHEP 10 (2017) 129]
 - ► H→WW*, ττ, ZZ* (2IvSS, 3I) [Phys. Rev. D 98 032002]

- No significant excess of events above the background expectation is found
 - 95% CL limits on B(t→Hu) < 0.11 % (exp. 0.083%)</p>
 - ▶ 95% CL limits on B(t→Hc) < 0.12 % (exp. 0.083%)</p>

JHEP 05 (2019) 123

CKM 2021: Rare top decays (FCNC,CPV) at ATLAS and CMS

Search for the FCNC tyq interaction

- Search for t→γq (q=u, c)
- Single top production (ST) and top decay (TT)
- Right-handed (RH) and left-handed (LH)
- Signal regions: exactly 1 photon, 1 e/μ, 1 b-jet, no further jet
- Background
 - ► Electrons / hadrons misidentified as photons → estimated from data
 - W/Z + γ +jets \rightarrow estimated from MC in control regions
- NN is adopted to differentiate signal from background events
- Normalizations are extracted from a simultaneous binned likelihood fit

PLB 800 (2020) 135082

Search for the FCNC tyq interaction

- The data are consistent with the background only hypothesis
- 95% CL upper limits are set on the strength of effective operators, cross-section of single top production, and branching fraction

Observable	Vertex	Coupling	Obs.	Exp.
$C_{\rm uW}^{(13)*} + C_{\rm uB}^{(13)*}$	tuγ	LH	0.19	$0.22^{+0.04}_{-0.03}$
$C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}$	tuγ	RH	0.27	$0.27^{+0.05}_{-0.04}$
$C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*}$	tcγ	LH	0.52	$0.57^{+0.11}_{-0.09}$
$C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}$	tcγ	RH	0.48	$0.59^{+0.12}_{-0.09}$
$\sigma(pp \to t\gamma) \text{ [fb]}$	tuγ	LH	36	52^{+21}_{-14}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tuγ	RH	78	75^{+31}_{-21}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tcγ	LH	40	49_{-14}^{+20}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tcγ	RH	33	52^{+22}_{-14}
$\mathcal{B}(t \to q\gamma) [10^{-5}]$	tuγ	LH	2.8	$4.0^{+1.6}_{-1.1}$
$\mathcal{B}(t \to q\gamma) [10^{-5}]$	tuγ	RH	6.1	$5.9^{+2.4}_{-1.6}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	LH	22	27^{+11}_{-7}
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	RH	18	28^{+12}_{-8}

The most stringent limits to date in tqy FCNC searches

PLB 800 (2020) 135082

Search for the FCNC tZq interaction

- Search for $t \rightarrow Zq$ (q=u, c), $Z \rightarrow \ell \ell$
- Single top production (ST) and top decay (TT)
- Consider right-handed (RH) and left-handed (LH)
- Signal regions: 3 leptons, ≥ 1 jets (with exactly 1 b-jet)
 - SR1: targeting TT

 \rightarrow orthogonality is ensured by using a mass cut on $M_{top(FCNC)}$

- SR2: targeting ST
- Gradient BDTs are adopted to distinguish signal from background events

ATLAS

ATLAS-CONF-2021-049

139 fb⁻¹, 13 TeV

 D_2^u

Search for the FCNC tZq interaction

- All SRs are combined
 - For FCNC tZu vertex, SR2 has a higher contribution to the combined limits
- No evidence of a signal is found
- The results improved by a factor of 3 (2) compared to previous results (JHEP 07 (2018) 176)
 - Inclusion of FCNC single top production
 - Usage of multivariate analysis
 - Higher integrated luminosity
- 95% CL upper limits

The most stringent limits to date in tZq FCNC searches

Observable	Vertex	Coupling	Observed	Expected
	SR1+CRs			
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZu	LH	9.7	$8.6^{+3.6}_{-2.4}$
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZu	RH	9.5	$8.2^{+3.4}_{-2.3}$
	SR2+CRs			
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZu	LH	7.8	$6.1^{+2.7}_{-1.7}$
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZu	RH	9.0	$6.6^{+2.9}_{-1.8}$
	SRs+CRs			
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZu	LH	6.2	$4.9^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZu	RH	6.6	$5.1^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZc	LH	13	11^{+5}_{-3}
$\mathcal{B}(t \to Zq) \ [10^{-5}]$	tZc	RH	12	10^{+4}_{-3}
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13^{+0.03}_{-0.02}$
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14_{-0.02}^{+0.03}$
$ C_{uW}^{(23)*} $ and $ C_{uB}^{(23)*} $	tZc	LH	0.22	$0.20_{-0.03}^{+0.04}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19_{-0.03}^{+0.04}$

ATLAS-CONF-2021-049

Top FCNC Summary

- Search for FCNC is performed in various channels
- Starting probing models predicting highest branching fractions

Top CLFV

Charged lepton flavor violation (CLFV)

o masses o masses ls, etc. If the new physics responsible for the CLFV is at scales beyond what the LHC can directly probe, the SM Lagrangian can be extended by dimension-6 operators

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{x} \frac{C_x}{\Lambda^2} O_x + \dots$$

- CLFV interaction types
 - Vector: O_{lq}^{ijkl} , O_{lu}^{ijkl} , O_{eq}^{ijkl} , O_{eu}^{ijkl}
 - Scalar: $O_{lequ}^{(1)ijkl}$
 - Tensor: $O_{lequ}^{(3)ijkl}$

$$\begin{split} O_{lq}^{(3)ijkl} &= (\bar{l}_i \gamma^{\mu} \tau^I l_j) (\bar{q}_k \gamma^{\mu} \tau^I q_l), \\ O_{lq}^{(1)ijkl} &= (\bar{l}_i \gamma^{\mu} l_j) (\bar{q}_k \gamma^{\mu} q_l), \\ O_{lu}^{ijkl} &= (\bar{l}_i \gamma^{\mu} l_j) (\bar{u}_k \gamma^{\mu} u_l), \\ O_{eq}^{ijkl} &= (\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma^{\mu} q_l), \\ O_{eu}^{ijkl} &= (\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma^{\mu} u_l), \\ O_{lequ}^{(1)ijkl} &= (\bar{l}_i e_j) \varepsilon (\bar{q}_k u_l), \\ O_{lequ}^{(3)ijkl} &= (\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu\nu} u_l), \end{split}$$

Search for the eµ LFV interactions

- Search for CLFV in eµ final state
- Signal: CLFV vector, scalar and tensor
- BDT is used to discriminate signal from BG events
- Dominant systematic uncertainties:
 b-tagging and jet energy scale & resolution
- Data consistent with SM expectation
 - B_{scalar}(t→eµu(c)) < 0.07 (0.89) × 10⁻⁶
 - B_{vector}(t→eµu(c)) < 0.135 (1.3) × 10⁻⁶
 - B_{tensor}(t→eµu(c)) < 0.25 (2.59) × 10⁻⁶

CMS

CMS-PAS-TOP-19-006

CKM 2021: Rare top decays (FCNC,CPV) at ATLAS and CMS

Search for the eµ LFV interactions

مقفوقوقوق

- Search for CLFV in final states with t
- Consider only top decay process
- CLFV top reconstructed from two op
- Background
 - Prompt background: WZ, ZZ
 - Non-prompt background: tt, Z+jets
- BDT is used to discriminate signal from BG events
- Dominant systematics:

non-closure uncertainty and stat. on efficiencies

- Data consistent with SM expectation
- Upper limits are set at 95% CL
 - B(t→ℓℓ'q) < 1.86 (1.36) × 10⁻⁵ obs (exp)
 - B(t→eµq) < 6.6 (4.8) × 10⁻⁶ obs (exp)

our leptons and a jet

ptons

ATLAS-CONF-18-044 80 fb⁻¹, 13 TeV

Top CPV

Search for CPV in the top sector

- CP violation in SM not large enough to describe the matter-antimatter asymmetry of the universe
- In the SM, CPV in the production and decay of top quark pairs is predicted to be very small
- Top-quark pair production and decay provide a unique opportunity to study CPV
- Simple CP odd observables
- triple-product observables of the form v1· (v2×v3)
 where vi are spin/four momentum of top decay
 products, Oi, are odd under CP transformation

$$A_i = \frac{N(O_i > 0) - N(O_i < 0)}{N(O_i > 0) + N(O_i < 0)}$$

• chromo-electric dipole moment (CEDM) of top quark in top pair production induces CPV

chromo-electric dipole moment

Search for CPV interactions

- Extract the asymmetry and CEDM in top pair events in the dilepton final states
- Observables; O₁ and O₃ Alper Hayreter and German Valencia, Phys. Rev. D 93, 014020 (2016)

$$\mathcal{O}_{1} = \epsilon(p_{t}, p_{\bar{t}}, p_{\ell^{+}}, p_{\ell^{-}}) = \begin{vmatrix} E_{t} & p_{t_{x}} & p_{t_{y}} & p_{t_{z}} \\ E_{\bar{t}} & p_{\bar{t}_{x}} & p_{\bar{t}_{y}} & p_{\bar{t}_{z}} \\ E_{\ell^{+}} & p_{\ell^{+}_{x}} & p_{\ell^{+}_{y}} & p_{\ell^{+}_{z}} \\ E_{\ell^{-}} & p_{\ell^{-}_{x}} & p_{\ell^{-}_{y}} & p_{\ell^{-}_{z}} \end{vmatrix} \qquad \mathcal{O}_{3} = \epsilon(p_{b}, p_{\bar{b}}, p_{\ell^{+}}, p_{\ell^{-}}) = \begin{vmatrix} E_{b} & p_{b_{x}} & p_{b_{y}} & p_{b_{z}} \\ E_{b} & p_{\bar{b}_{x}} & p_{\bar{b}_{y}} & p_{\bar{b}_{z}} \\ E_{\ell^{+}} & p_{\ell^{+}_{x}} & p_{\ell^{+}_{y}} & p_{\ell^{+}_{z}} \\ E_{\ell^{-}} & p_{\ell^{-}_{x}} & p_{\ell^{-}_{y}} & p_{\ell^{-}_{z}} \end{vmatrix}$$

- The measured asymmetries are consistent with the Standard Model prediction
- Asymmetry and CEDM have linear correlation
- CEDM is extracted by exploiting its correlation with the asymmetry

CKM 2021: Rare top decays (FCNC,CPV) at ATLAS and CMS

Search for CPV interactions

CMS-PAS-TOP-20-005 137 fb⁻¹, 13 TeV

- Lepton + jets final states
- Observables: O₃, O₆, O₁₂ and O₁₄ Alper Hayreter and German Valencia, Phys. Rev. D 93, 014020 (2016)

$$\begin{split} &O_{3} = Q_{\ell} \epsilon(p_{\rm b}, p_{\bar{\rm b}}, p_{\ell}, p_{j_{1}}) \propto Q_{\ell} \vec{p'}_{\rm b} \cdot (\vec{p'}_{\ell} \times \vec{p'}_{j_{1}}) \\ &O_{6} = Q_{\ell} \epsilon(P, p_{\rm b} - p_{\bar{\rm b}}, p_{\ell}, p_{j_{1}}) \propto Q_{\ell} (\vec{p}_{\rm b} - \vec{p}_{\bar{\rm b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}) \\ &O_{12} = q \cdot (p_{\rm b} - p_{\bar{\rm b}}) \epsilon(P, q, p_{\rm b}, p_{\bar{\rm b}}) \propto (\vec{p}_{\rm b} - \vec{p}_{\bar{\rm b}})_{z} \cdot (\vec{p}_{\rm b} \times \vec{p}_{\bar{\rm b}})_{z} \\ &O_{14} = \epsilon(P, p_{\rm b} + p_{\bar{\rm b}}, p_{\ell}, p_{j_{1}}) \propto (\vec{p}_{\rm b} + \vec{p}_{\bar{\rm b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}). \end{split}$$

- Top quark and antiquark candidates are reconstructed using a χ^2 sorting algorithm
- The background contribution in the signal region is estimated from a fit to the mass distribution M_{lb}

Search for CPV interactions

- Experimental factors that affect the measurements are parametrized with a dilution factor
 - Comparing GEN level to RECO level observable
 - Observable-dependent

 $D = \epsilon_c - \epsilon_w$

fraction of wrong sign events

fraction of correct sign events

Observable	Dilution factor D
<i>O</i> ₃	$0.4642^{+0.0007}_{-0.0007}$ (stat.) $^{+0.0135}_{-0.0167}$ (syst.)
<i>O</i> ₆	$0.4368^{+0.0007}_{-0.0007}(\text{stat.}) \ ^{+0.0124}_{-0.0152}(\text{syst.})$
<i>O</i> ₁₂	$0.7381^{+0.0006}_{-0.0006}(\text{stat.}) \ ^{+0.0129}_{-0.0171}(\text{syst.})$
<i>O</i> ₁₄	$0.5989^{+0.0007}_{-0.0007}$ (stat.) $^{+0.0112}_{-0.0143}$ (syst.)

- There is no significant evidence of CPV in each observable
 - Consistent with the SM prediction

		$A'_{CP}(\%)$	
	e + jets	$\mu + jets$	Combined
<i>O</i> ₃	$-0.071 \pm 0.149 (\text{stat.})^{+0.092}_{-0.058} (\text{syst.})$	$-0.035 \pm 0.120(\text{stat.})^{+0.022}_{-0.094}(\text{syst.})$	$-0.048 \pm 0.094(\text{stat.})^{+0.041}_{-0.065}(\text{syst.})$
O_6	$-0.167 \pm 0.149 (ext{stat.})^{+0.077}_{-0.038} (ext{syst.})$	-0.111 ± 0.120 (stat.) $^{+0.042}_{-0.093}$ (syst.)	$-0.131 \pm 0.094(\text{stat.})^{+0.049}_{-0.068}(\text{syst.})$
<i>O</i> ₁₂	$-0.039 \pm 0.149 (ext{stat.})^{+0.056}_{-0.090} (ext{syst.})$	$+0.163 \pm 0.120$ (stat.) $^{+0.038}_{-0.065}$ (syst.)	$+0.090 \pm 0.094$ (stat.) $^{+0.034}_{-0.053}$ (syst.)
O_{14}	$-0.186 \pm 0.149 (\text{stat.})^{+0.075}_{-0.065} (\text{syst.})$	-0.162 ± 0.120 (stat.) $^{+0.117}_{-0.032}$ (syst.)	-0.171 ± 0.094 (stat.) $^{+0.085}_{-0.023}$ (syst.)

CKM 2021: Rare top decays (FCNC,CPV) at ATLAS and CMS

Measurement of Top Polarisation

- Sensitive to CPV (non-zero imaginary CtW)
- t-channel single top production
- SM effective field theory

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{k} \frac{C_k}{\Lambda^2} O_k^{[6]} + \dots$$

- Only the Otw operator with its complex coefficient has an effect on the polarisation of the top quark
- Polarisation
 - P_x[,] is affected by real C_{tW}
 - P_y, is affected by imaginary C_{tW}
- Dominant uncertainties on Py': JER and Stat.
- Compatible with the SM predictions

	C_{tW}		\mathbf{C}_{it}	$\overline{\mathrm{C}_{\mathrm{itW}}}$	
	$68\%~{ m CL}$	$95\%~\mathrm{CL}$	$68\% \ \mathrm{CL}$	$95\%~\mathrm{CL}$	
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^4$	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]	

q

ATLAS-CONF-21-027

139 fb⁻¹, 13 TeV

xtracted value	(stat.)
1.045 ± 0.022	(± 0.006)
1.148 ± 0.027	(± 0.005)
1.005 ± 0.016	(± 0.004)
$+0.01 \pm 0.18$	(± 0.02)
-0.02 ± 0.20	(± 0.03)
0.029 ± 0.027	(± 0.011)
0.007 ± 0.051	(± 0.017)
$+0.91\pm0.10$	(± 0.02)
-0.79 ± 0.16	(± 0.03)
	$\begin{array}{c} \text{xtracted value} \\ -1.045 \pm 0.022 \\ -1.148 \pm 0.027 \\ -1.005 \pm 0.016 \\ +0.01 \pm 0.18 \\ -0.02 \pm 0.20 \\ -0.029 \pm 0.027 \\ -0.007 \pm 0.051 \\ +0.91 \pm 0.10 \\ -0.79 \pm 0.16 \end{array}$

Best limits so far from high-energy experiments!

More details in "<u>W helicity and top quark polarizations</u>" by Marcel Vreeswijk

CKM 2021: Rare top decays (FCNC,CPV) at ATLAS and CMS

Summary

Run 2 update

- LHC is a top quark factory, allowing ATLAS and CMS to search for rare top quark interactions
- Results are consistent with the SM prediction, no significant deviation is observed
- Significant improvements with new methods & more luminosities

What's next?

- More searches are performed with full Run-II data and will be published soon
- More data is coming, stay tuned!

Thank You!

The BRE LIDE HARDEN