### Results on Contact Interactions (mainly *bsll*) CKM Conference 2021

#### Yoav Afik (CERN) On behalf of the ATLAS and the CMS collaborations

23.11.2021



#### Motivation

b

s

• Hints of Lepton Flavour Universality (LFU) violation in rare B-meson decays:

- 
$$b 
ightarrow s\ell\ell \; (R_{K^{(*)}}); \; b 
ightarrow c\ell 
u \; (R_{D^{(*)}}).$$







• Muon g-2 anomaly, possibly connected to the LFU anomaly.

μ

### Motivation

• Hints of Lepton Flavour Universality (LFU) violation in rare B-meson decays:

- 
$$b 
ightarrow s\ell\ell \; (R_{K^{(*)}}); \; b 
ightarrow c\ell 
u \; (R_{D^{(*)}}).$$









- Muon g-2 anomaly, possibly connected to the LFU anomaly.
  - The solutions to the anomalies can be parametrized using Contact Interaction (CI)!
    - Cross-generational CIs are motivated.



Y. Afik (CERN)

23.11.2021 2 / 16

#### Non-resonant Searches

- Assumption: heavy mass state are beyond of the LHC reach.
- Signal is modeled by using an Effective Field Theory (EFT).
- Heavy mass states are "integrated out".





= nac

#### Inclusive Non-resonant Searches



• Universal coupling between leptons and quarks:

$$\begin{split} \mathcal{L} &= \frac{4\pi}{\Lambda^2} \left\{ \eta_{\mathrm{LL}} \left( \bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}} \right) \left( \bar{\ell}_{\mathrm{L}} \gamma^{\mu} \ell_{\mathrm{L}} \right) + \right. \\ & \left. \eta_{\mathrm{RR}} \left( \bar{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}} \right) \left( \bar{\ell}_{\mathrm{R}} \gamma^{\mu} \ell_{\mathrm{R}} \right) + \right. \\ & \left. \eta_{\mathrm{LR}} \left( \bar{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}} \right) \left( \bar{\ell}_{\mathrm{R}} \gamma^{\mu} \ell_{\mathrm{R}} \right) + \right. \\ & \left. \eta_{\mathrm{RL}} \left( \bar{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}} \right) \left( \bar{\ell}_{\mathrm{L}} \gamma^{\mu} \ell_{\mathrm{L}} \right) \right\} \end{split}$$

ATLAS Simulation

• Main background: Z + jets, normalized by data.



Y. Afik (CERN)

JHEP 11. 005 (2020)

• Limits are set on the coefficients of the operators:

- For different chirality structures.
- For both destructive and constructive interference with the Standard Model.



- Re-interpretation of the  $q\bar{q}\ell^+\ell^-$  non-resonant search.
- Limits on ADD model of large extra dimensions.
- *M<sub>S</sub>* is the string scale of the theory.



Y. Afik (CERN)

= nan

## Search for $q\bar{q}\ell^+\ell^-$ CIs and Large Extra Dimensions (CMS)

- Limits on similar CI operators.
- In addition ADD model of large extra dimensions.
- Normalizing the background in a dedicated CR with  $60 < m_{\ell\ell} < 120$  GeV.





JHEP 07, 208 (2021)

= nan

#### Test of LFU at TeV Scale (CMS)

- First test of LFU at the TeV scale, inspired by Greljo, Marzocca, EPJC (2017).
- Ratio of the differential cross-section  $R_{\mu^+\mu^-/e^+e^-}$ :
  - Reducing all non-Z + jets backgrounds.
  - Correcting the reconstructed invariant mass spectra to particle level (unfolding).
- Resulting χ<sup>2</sup>/dof yield *p*-values of 0.130, 0.225 and 0.012, respectively.



JHEP 07, 208 (2021)

#### Exclusive Non-resonant Searches



- Generalizing the *bsll* interactions (4-fermion operator).
- Looking at direct production via pp collisions:



- We can search for BSM Physics in final states contain two opposite sign leptons and exactly one b-jet.
- Phenomenological framework established at YA, Cohen, Gozani, Kajomovitz, Rozen, JHEP (2018).
- The scale favored by the anomalies is  $\Lambda/g_* \sim 40$  TeV.

nys.Rev.Lett. 127 (2021) 14, 141801



• General set of Signal Regions (SRs).

| Region            | top-CRs | Z-CRs   | VRs     | SRs                   |
|-------------------|---------|---------|---------|-----------------------|
| <i>m</i> ℓℓ [GeV] | > 130   | 130-250 | 250-400 | $> 400 + n \cdot 100$ |
| b-tagged jets     | 2       |         | 0/1     |                       |
|                   |         |         |         |                       |

- Enhanced sensitivity for many models as possible.
- Main backgrounds: *Z* + *jets*, di-leptonic *tt*, normalized from data.



JE JAC

- Many SRs are used for the statistical interpretation.
- Limits are set on the model-independent cross-section: σ<sub>vis</sub> = σ · ε · A.
- Far below the scale favored by the anomalies:

| electrons | $\Lambda/g_* > 2.0 { m TeV}$ |
|-----------|------------------------------|
| muons     | $\Lambda/g_*>2.4~{ m TeV}$   |

• Highest statistical deviation is observed at the  $e^+e^- + 1b$  channel: 2.6 $\sigma$  local (1.5 $\sigma$  global).



ELE DQQ

• The same signature allows an enhanced sensitivity for other signal scenarios, e.g. YA, Bar-Shalom, Cohen, Rozen, PLB (2020) and YA, Bar-Shalom, Soni, Wudka, Phys. Rev. D 103, 075031.



Y. Afik (CERN)

Phys.Rev.Lett. 127 (2021) 14, 141801

23.11.2021 14 / 16

• A variety of CI related searches:

- Inclusive di-lepton search.
- Di-lepton search with *b*-tagged jet selections.
- Limits were set on  $q\bar{q}\ell^+\ell^-$  CIs and ADD model, improving previous results by a few TeV.
- First ratio measurement of the differential cross-section at the TeV scale.
- First limits on  $bs\ell\ell$  CI, still far from the value which is favored by the anomalies, which is  $\sim$  40 TeV.

#### Thank You



#### Backup Slides





Y. Afik (CERN)

JHEP 11. 005 (2020)

23.11.2021 18 / 16



Y. Afik (CERN)

JHEP 11, 005 (2020)

23.11.2021 19 / 16



Y. Afik (CERN)

JHEP 11, 005 (2020)

23.11.2021 20 / 16

= nac

| Channel      | Constru       | ctive inte | rference   | Destructive interference |            |               |  |
|--------------|---------------|------------|------------|--------------------------|------------|---------------|--|
|              | $CR_{min} \\$ | $CR_{max}$ | $SR_{min}$ | CR <sub>min</sub>        | $CR_{max}$ | $SR_{min} \\$ |  |
| $e^+e^-$     | 280           | 2200       | 2200       | 310                      | 1450       | 2770          |  |
| $\mu^+\mu^-$ | 310           | 2070       | 2070       | 320                      | 1250       | 2570          |  |

| Channel      | Interference | Backgr $\sigma_{ m b}^{ m Stat}$ | ound unce $\sigma_{\rm b}^{\rm ISS}$ | ertainties $\sigma_{\rm b}^{\rm CRB}$ | Signal unce $\sigma_{ m s}^{ m Experiment}$ | rtainties $\sigma_{ m s}^{ m Theory}$ |
|--------------|--------------|----------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|
| $e^+e^-$     | Constructive | 14%                              | 4%                                   | 2%                                    | 8%                                          | +11%<br>-10%                          |
| $e^+e^-$     | Destructive  | 34%                              | 7%                                   | 1%                                    | 8%                                          | +14%<br>-13%                          |
| $\mu^+\mu^-$ | Constructive | 21%                              | 6%                                   | 2%                                    | +20%<br>-17%                                | +10%<br>-9%                           |
| $\mu^+\mu^-$ | Destructive  | 58%                              | 24%                                  | 4%                                    | +27%<br>-22%                                | +13%<br>-12%                          |

| SR                  | Data | Background | Significance |
|---------------------|------|------------|--------------|
| $e^+e^-$ Const.     | 19   | 12.4±1.9   | 1.28         |
| $e^+e^-$ Dest.      | 2    | 3.1±1.1    | - 0.72       |
| $\mu^+\mu^-$ Const. | 6    | 9.6±2.1    | - 0.99       |
| $\mu^+\mu^-$ Dest.  | 1    | 1.4±0.9    | - 0.58       |

|                     | Limit or | $\sigma_{\mathrm{vis}} 	imes \mathcal{B}$ [fb] | Limit | on N <sub>sig</sub> |                       | 20 T I I                                            | Signal (L             | L chirality only)                                    |           | 10 m I I                                            |
|---------------------|----------|------------------------------------------------|-------|---------------------|-----------------------|-----------------------------------------------------|-----------------------|------------------------------------------------------|-----------|-----------------------------------------------------|
| SR                  | Exp.     | Obs.                                           | Exp.  | Obs.                | Λ<br>N <sub>sig</sub> | = 20 TeV<br>$\mathcal{A} \times \epsilon_{sig}$ [%] | Λ<br>N <sub>sig</sub> | = 30 TeV<br>$\mathcal{A} \times \epsilon_{sig} [\%]$ | $N_{sig}$ | = 40 TeV<br>$\mathcal{A} \times \epsilon_{sig}$ [%] |
| $e^+e^-$ Const.     | 0.067    | 0.115                                          | 9.3   | 16.0                | 39.1                  | 69                                                  | 10.3                  | 69                                                   | 4.4       | 69                                                  |
| $e^+e^-$ Dest.      |          | 0.032                                          | 5.0   | 4.4                 | 9.6                   | 70                                                  | 1.0                   | 70                                                   | -0.1      | 69                                                  |
| $\mu^+\mu^-$ Const. | 0.057    | 0.042                                          | 8.0   | 5.8                 | 28.5                  | 43                                                  | 7.7                   | 43                                                   | 3.4       | 43                                                  |
| $\mu^+\mu^-$ Dest.  | 0.029    | 0.027                                          | 4.0   | 3.8                 | 7.1                   | 43                                                  | 0.6                   | 42                                                   | -0.2      | 44                                                  |

| Int.  | Channel   | Exp./Obs.   | LL   | LR   | RL   | RR   |
|-------|-----------|-------------|------|------|------|------|
|       | 00        | Expected    | 31.1 | 28.9 | 28.7 | 30.9 |
| tive  | ee        | Observed    | 26.1 | 24.7 | 24.6 | 26.0 |
| truci |           | Expected    | 29.2 | 27.1 | 27.0 | 29.0 |
| onst  | μμ        | μμ Observed | 32.7 | 30.0 | 29.8 | 32.6 |
| U     | PP        | Expected    | 37.6 | 34.0 | 33.7 | 37.3 |
|       | u         | Observed    | 35.8 | 32.5 | 32.3 | 35.5 |
|       | 00        | Expected    | 23.0 | 24.4 | 24.4 | 23.2 |
| tive  | <i>cc</i> | Observed    | 23.5 | 25.1 | 25.1 | 23.7 |
| truc  |           | Expected    | 22.0 | 23.6 | 23.6 | 22.2 |
| Jest  | μμ        | Observed    | 22.3 | 23.9 | 23.9 | 22.5 |
|       | PP        | Expected    | 25.6 | 28.0 | 28.0 | 25.9 |
|       | ťℓ        | Observed    | 26.0 | 28.8 | 28.8 | 26.5 |

Y. Afik (CERN)

JHEP 11, 005 (2020)



EI= DQC

イロト (雪) (ヨ) (ヨ)



= 990

▶ 《三》 《三》



◆□ ▶ ◆母 ▶ ◆ = ▶ ◆ = ▶ ● ● ● ● ●

ATL-PHYS-PUB-2021-02

Y. Afik (CERN)

| Electron selection                                                      | Muon selection                                             |
|-------------------------------------------------------------------------|------------------------------------------------------------|
| Trigger                                                                 |                                                            |
| $2 e$ with $E_{\mathrm{T}} > 12$ - $24 \ \mathrm{GeV}$                  | $1 \ \mu \text{ with } p_{\mathrm{T}} > 50 \ \mathrm{GeV}$ |
| Acceptance                                                              |                                                            |
| $ \eta  < 2.47$                                                         | $ \eta  < 2.5$                                             |
| excluding region $1.37 <  \eta  < 1.52$                                 | excluding region $1.01 <  \eta  < 1.10$                    |
| $E_{\rm T} > 30 { m ~GeV}$                                              | $p_{\mathrm{T}} > 30 \mathrm{GeV}$                         |
| Primary vertex (P                                                       | V)                                                         |
| Track from PV                                                           |                                                            |
| Longitudinal displacement                                               | : near PV                                                  |
| Transverse displacement                                                 | near PV                                                    |
| Quality selection                                                       |                                                            |
| Medium working point likelihood criteria                                | High- $p_T$ working point                                  |
| Track isolation (variable cone size)                                    | Track isolation (variable cone size)                       |
| Calorimeter isolation ( $E_{\rm T}$ dependent, in cone $\Delta R = 0.2$ | 2) $\left(\frac{q}{p}\right)$ requirement                  |
|                                                                         |                                                            |
|                                                                         |                                                            |

= nac

| ee Channel                         |                         | uu Channel                      |                |
|------------------------------------|-------------------------|---------------------------------|----------------|
| String Scale, $M_{\hbox{S}}$ (GeV) | $N_{\mathrm{sig}}^{SR}$ | String Scale, $M_{\rm S}$ (GeV) | $N_{sig}^{SR}$ |
| 3000                               | 230                     | 3000                            | 230            |
| 4000                               | 140                     | 4000                            | 99             |
| 5000                               | 41                      | 5000                            | 26             |
| 6000                               | 12                      | 6000                            | 6.9            |
| 7000                               | 3.3                     | 7000                            | 2.1            |
| 8000                               | 1.1                     | 8000                            | 0.65           |

> < = > < = >

= 990

| Channel       | Cross Section Secling | CDW | Hewett         |       |       | HLZ   |       |       |
|---------------|-----------------------|-----|----------------|-------|-------|-------|-------|-------|
| Channel C     | Cross Section Scanng  | GRW | $\lambda = +1$ | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 |
| Exp: ee       | <i>A</i>              | 6.5 | 6.2            | 7.0   | 6.5   | 6.2   | 6.0   | 5.8   |
| Obs: ee       | 9                     | 6.6 | 6.2            | 7.1   | 6.6   | 6.2   | 6.0   | 5.8   |
| Exp: ee       | <i>a</i> :2           | 6.5 | 5.8            | 7.5   | 6.5   | 5.9   | 5.4   | 5.1   |
| Obs: ee       | J* -                  | 6.6 | 5.9            | 7.6   | 6.6   | 5.9   | 5.5   | 5.1   |
| Exp: $\mu\mu$ | Œ                     | 6.3 | 5.9            | 6.8   | 6.3   | 6.0   | 5.7   | 5.6   |
| Obs: $\mu\mu$ | F                     | 6.4 | 6.0            | 6.9   | 6.4   | 6.0   | 5.8   | 5.6   |
| Exp: $\mu\mu$ | T.2                   | 6.3 | 5.6            | 7.3   | 6.3   | 5.7   | 5.2   | 4.9   |
| Obs: $\mu\mu$ | Jr =                  | 6.4 | 5.7            | 7.4   | 6.4   | 5.7   | 5.3   | 5.0   |

> < = > < = >

= 990



JHEP 07, 208 (2021)

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆□ > ◆



ELE DQC

JHEP 07, 208 (20

Y. Afik (CERN)



JHEP 07, 208 (2021)



Y. Afik (CERN)

JHEP 07, 208 (2021)

23.11.2021 35 / 16

|                                               | Impa             | ct on ba               | ckgrou                      | nd [%] |
|-----------------------------------------------|------------------|------------------------|-----------------------------|--------|
| Uncertainty source                            | $m_{\ell\ell} >$ | $\cdot 1 \mathrm{TeV}$ | $m_{\ell\ell} > 3{\rm TeV}$ |        |
|                                               | ee               | μμ                     | ee                          | μμ     |
| Lepton selection efficiency                   | 6.8              | 0.8                    | 6.4                         | 1.3    |
| Muon trigger efficiency                       |                  | 0.9                    |                             | 0.9    |
| Mass scale                                    | 7.0              | 2.7                    | 15.4                        | 2.4    |
| Dimuon mass resolution                        |                  | 0.1                    | _                           | 0.6    |
| Pileup reweighting                            | 0.3              | —                      | 0.5                         |        |
| Trigger prefiring                             | 0.5              | —                      | 0.2                         | —      |
| PDF                                           | 3.7              | 3.0                    | 9.4                         | 10.2   |
| Cross section for other simulated backgrounds | 0.6              | 0.8                    | 0.2                         | 0.4    |
| Z peak normalization                          | 2.3              | 5.0                    | 2.0                         | 5.0    |
| Simulated sample size                         | 0.4              | 0.4                    | 1.3                         | 1.6    |

JHEP 07, 208 (2021)

三三 のへで

((ロ) (日) (日) (日) (日)

| m <sub>ee</sub> range | Observed | Total                 | DY                    | Other prompt       | 🦳 Jet mis-       |
|-----------------------|----------|-----------------------|-----------------------|--------------------|------------------|
| [GeV]                 | yield    | background            |                       | lepton backgrounds | identification   |
| 60-120                | 28194452 | $28200000 \pm 710000$ | $28000000 \pm 710000$ | $153000 \pm 8000$  | $11300 \pm 5700$ |
| 120-400               | 912504   | $942000 \pm 37000$    | $744000 \pm 31000$    | $179000 \pm 11000$ | $18900 \pm 9500$ |
| 400-600               | 16192    | $16400 \pm 770$       | $10900 \pm 477$       | $4910\pm 340$      | $534 \pm 267$    |
| 600-900               | 3756     | $3660 \pm 190$        | $2800 \pm 150$        | $757\pm52$         | $103\pm51.4$     |
| 900-1300              | 704      | $696 \pm 47$          | $590 \pm 42$          | $89.8\pm6.8$       | $16.0\pm8.0$     |
| 1300-1800             | 135      | $131 \pm 12$          | $118 \pm 11$          | $11.0 \pm 1.0$     | $2.82 \pm 1.41$  |
| >1800                 | 44       | $29.2\pm3.6$          | $26.8\pm3.5$          | $1.60\pm0.22$      | $0.82\pm0.41$    |
| $m_{\mu\mu}$ range    | Observed | Total                 | DY                    | Other prompt       | Jet mis-         |
| GeV                   | yield    | background            |                       | lepton backgrounds | identification   |
| 60-120                | 164075   | $166000 \pm 9360$     | $165000 \pm 9300$     | $994\pm89$         |                  |
| 120-400               | 977714   | $1050000 \pm 60400$   | $836000 \pm 47000$    | $210000 \pm 19000$ | $3070 \pm 1540$  |
| 400-600               | 24041    | $26100\pm1580$        | $16700 \pm 970$       | $9120 \pm 820$     | $212\pm106$      |
| 600–900               | 5501     | $5610\pm337$          | $4170\pm250$          | $1370\pm120$       | $74.0\pm37.0$    |
| 900-1300              | 996      | $1050\pm65$           | $863 \pm 52$          | $169 \pm 15$       | $19.9\pm10.0$    |
| 1300-1800             | 183      | $195 \pm 13$          | $169 \pm 10$          | $19.9\pm1.8$       | $6.7\pm3.4$      |
| >1800                 | 42       | $44.3\pm3.4$          | $38.7\pm2.5$          | $3.3\pm0.3$        | $2.2 \pm 1.1$    |

HEP 07, 208 (2021)

|                          | GRW                     | Hewett               |              |           | HLZ                  | 1         |           |  |  |
|--------------------------|-------------------------|----------------------|--------------|-----------|----------------------|-----------|-----------|--|--|
| Order                    | $\Lambda_{\rm T}$ [TeV] | M <sub>S</sub> [TeV] |              |           | M <sub>S</sub> [TeV] |           |           |  |  |
|                          |                         | $\lambda = +1$       | <i>n</i> = 3 | n = 4     | n = 5                | n = 6     | n = 7     |  |  |
| ee                       |                         |                      |              |           |                      |           |           |  |  |
| LO                       | 6.7 (6.9)               | 5.9 (6.2)            | 7.9 (8.2)    | 6.7 (6.9) | 6.0 (6.3)            | 5.6 (5.8) | 5.3 (5.5) |  |  |
| $LO \times 1.3$          | 6.9 (7.2)               | 6.1 (6.4)            | 8.2 (8.5)    | 6.9 (7.2) | 6.2 (6.5)            | 5.8 (6.0) | 5.5 (5.7) |  |  |
|                          |                         |                      | μμ           |           |                      |           |           |  |  |
| LO                       | 7.0 (7.1)               | 6.2 (6.4)            | 8.3 (8.5)    | 7.0 (7.1) | 6.3 (6.4)            | 5.9 (6.0) | 5.6 (5.7) |  |  |
| LO ×1.3                  | 7.2 (7.4)               | 6.5 (6.6)            | 8.6 (8.8)    | 7.2 (7.4) | 6.5 (6.7)            | 6.1 (6.2) | 5.8 (5.9) |  |  |
| Combined ee and $\mu\mu$ |                         |                      |              |           |                      |           |           |  |  |
| LO                       | 7.3 (7.5)               | 6.5 (6.7)            | 8.6 (8.9)    | 7.3 (7.5) | 6.6 (6.8)            | 6.1 (6.3) | 5.8 (6.0) |  |  |
| $LO \times 1.3$          | 7.5 (7.8)               | 6.7 (6.9)            | 8.9 (9.2)    | 7.5 (7.8) | 6.7 (7.0)            | 6.3 (6.5) | 5.9 (6.2) |  |  |

JHEP 07, 208 (2021)

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < < つ < の < </li>



Y. Afik (CERN)

Phys.Rev.Lett. 127 (2021) 14, 141801

23.11.2021 39 / 16

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ◆ □ ▶ ◆ □ ◆



hys.Rev.Lett. 127 (2021) 14, 141801



Y. Afik (CERN)

hys.Rev.Lett. 127 (2021) 14, 141801

23.11.2021 41 / 16

JI DOG

ヘロト ヘヨト ヘヨト ヘヨト

| Source                           | e+e-+           | 0b (1b) [%]        | $\mu^{+}\mu^{-} + 0b (1b) [\%]$ |                    |  |
|----------------------------------|-----------------|--------------------|---------------------------------|--------------------|--|
|                                  | Signal $0b(1b)$ | Background 0b (1b) | Signal 0 <i>b</i> (1 <i>b</i> ) | Background 0b (1b) |  |
| Luminosity                       | 1.7 (1.7)       | 1.6 (1.5)          | 1.7 (1.7)                       | 1.7 (1.7)          |  |
| Pileup                           | <0.5 (<0.5)     | < 0.5 (0.7)        | <0.5 (<0.5)                     | <0.5 (<0.5)        |  |
| Leptons                          | 8.7 (8.6)       | 8.6 (6.3)          | 8.5 (6.5)                       | 9.1 (4.2)          |  |
| Jets                             | <0.5 (1.8)      | <0.5 (3.4)         | <0.5 (1.6)                      | <0.5 (1.9)         |  |
| b-tagging                        | <0.5 (1.4)      | < 0.5 (2.0)        | <0.5 (1.4)                      | <0.5 (2.2)         |  |
| Top bkg. extrapolation           | -               | 3.5 (32.0)         | -                               | <0.5 (36.0)        |  |
| Multijet extrapolation           | -               | 7.5 (15.0)         | -                               | -                  |  |
| Top bkg. modeling                | -               | <0.5 (<0.5)        | -                               | <0.5 (<0.5)        |  |
| $Z/\gamma^*$ +jets bkg. modeling | -               | 9.4 (4.3)          | -                               | 10.0 (5.5)         |  |
| MC statistics                    | 0.6 (0.8)       | 1.9 (3.5)          | 0.7 (1.0)                       | 1.7 (2.4)          |  |
| Total                            | 8.9 (9.1)       | 15.0 (37.0)        | 8.7 (7.1)                       | 14.0 (37.0)        |  |