EFT interpretation of low-PT results

Vasiliki A. Mitsou
for the ATLAS & CMS Collaborations
Flavour anomalies 2021

Hints of New Physics

- $B_s \rightarrow \phi \mu^+ \mu^-$
 $\sim 3.5\sigma$

- $B \rightarrow K^* \mu^+ \mu^-$
 angular distribution
 $\sim 3\sigma$

- $|V_{ub}|, |V_{cb}|$
 inclusive vs. exclusive
 $\sim 3\sigma$

- like-sign dimuon charge asymmetry
 $\sim 3.5\sigma$

- K decays: ϵ'/ϵ
 $\sim 2.5\sigma$

- $B \rightarrow K\mu^+\mu^-$
 $B \rightarrow K\ell^+\ell^-$
 $\sim 2.5\sigma$

- $B \rightarrow D^{(*)}\tau\nu$
 $B \rightarrow D^{(*)}\ell\nu$
 $\sim 4\sigma$

- muon $(g - 2)$
 $2.5\sigma - 3.5\sigma$

Quark sector

Lepton sector

Federico Mescia, Red LHC 2021
Potential violation of lepton-flavour universality (LFUV)

- $R(K^{(*)}) \iff b \to s\ell^+\ell^- \, (\text{neutral current}): \mu < e$
- $R(D^{(*)}) \iff b \to c\ell\nu \, (\text{charged current}): \tau > e, \mu$
Potential violation of lepton-flavour universality (LFUV)

- $\mathcal{R} (K^{(*)}) \leftrightarrow b \to s \ell^+ \ell^-$ (neutral current): $\mu \prec e$

- $\mathcal{R} (D^{(*)}) \leftrightarrow b \to c \ell \nu$ (charged current): $\tau \succ e, \mu$

Flavour anomalies 2021

Hints of New Physics

LHCb results

[M. Borsato, Flavour Anomaly w/s 2021]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

$B^+ \rightarrow K^{*+} \mu^+ \mu^-$

$B_s \rightarrow \phi \mu^+ \mu^-$

$B \rightarrow K^+ \mu^+ \mu^-$

$B \rightarrow K_e^+ e^-$

$B_s \rightarrow \phi \mu^+ \mu^-$

$B \rightarrow K^+ \mu^+ \mu^-$

$B \rightarrow K_e^+ e^-$

Like-sign dimuon charge asymmetry

$K \text{ decays: } \varepsilon' / \varepsilon$

$\sim 2.5\sigma$

$\sim 3.5\sigma$

$\sim 3\sigma$

$\sim 2.5\sigma$

$\sim 3\sigma$

$\sim 4\sigma$

Quark sector

Lepton sector
Flavour anomalies 2021

Hints of New Physics

$B_s \rightarrow \phi \mu^+ \mu^-$
$\sim 3.5\sigma$

$B \rightarrow K^{*} \mu^+ \mu^-$
angular distribution
$\sim 3\sigma$

$|V_{ub}|, |V_{cb}|$
inclusive vs. exclusive
$\sim 3\sigma$

like-sign dimuon
charge asymmetry
$\sim 3.5\sigma$

K decays:
ϵ'/ϵ
$\sim 2.5\sigma$

$B \rightarrow K^{*+} \mu^-
B \rightarrow K^{*+} e^-$
$\sim 2.5\sigma$

$B \rightarrow D^{(*)} \tau \nu
B \rightarrow D^{(*)} \ell \nu$
$\sim 4\sigma$

muon $(g - 2)$
$2.5\sigma - 3.5\sigma$

ATLAS / CMS
B → sℓ⁺ℓ⁻ transitions

- **Rare** (decay rate < 10^{-6})
 - flavour changing neutral currents forbidden at tree-level
 - proceed through **box** or **penguin** diagrams
 - small off-diagonal CKM elements
 - new physics could enter at the same order as SM

- **Experiment-friendly**
 - neutrinos ⇒ fully defined final state
 - several complementary channels
 - several complementary observables

- **Beautiful** (involves a b quark)
 - small long-distance contributions ($m_b \gg \Lambda_{QCD}$)
 - can interpret with **effective theory** ($m_b \ll m_W$)

- **Examples**
 - $B_s \rightarrow ℓ^+ℓ^-$, $B \rightarrow Kℓ^+ℓ^-$, $B \rightarrow K^*ℓ^+ℓ^-$,
 - $B_s \rightarrow φℓ^+ℓ^-$, $Λ_b \rightarrow pK^-ℓ^+ℓ^-$, ...

- **Branching ratios**
- **Angular analyses**
- **Symmetry tests** (FB, LFU ratios, ...)
Angular analysis of $b \to s \mu \mu$

- Angular distributions of the decay products in $B^0 \to K^* \mu \mu \to K^+ \pi^- \mu \mu$ sensitive to new physics
- K^* is vector \Rightarrow 3 polarisation states
- $B \to K^* \mu^+ \mu^-$ 4-body decay described by 3 angles and $q^2 \ (\equiv m_{\mu \mu}^2)$

$$\frac{d^4 \Gamma}{dq^2 \, d \cos \theta_K \, d \cos \theta_i \, d \phi} = \frac{9}{32 \pi} \left[\frac{3}{4} F_L \sin^2 \theta_K + F_L \cos^2 \theta_K \right.\left. + \left(\frac{1}{4} F_L \sin^2 \theta_K - F_L \cos^2 \theta_K \right) \cos 2 \theta_i + \frac{1}{2} P_1 F_L \sin^2 \theta_K \sin^2 \theta_i \cos 2 \phi\right.\left. + \sqrt{F_L} \left(P_4 \sin 2 \theta_K \sin 2 \theta_i \cos \phi + P_5' \sin 2 \theta_K \sin \theta_i \cos \phi \right)\right.\left. - \sqrt{F_L} \left(P_6 \sin 2 \theta_K \sin \theta_i \sin \phi - \frac{1}{2} P_8' \sin 2 \theta_K \sin 2 \theta_i \sin \phi \right)\right.\left. + 2P_2 F_L \sin^2 \theta_K \cos \theta_i - P_3 F_L \sin^2 \theta_K \sin^2 \theta_i \sin 2 \phi \right]$$

P_i basis: parameters optimised to reduce theoretical uncertainties
F_L: fraction of longitudinally polarised K^*

Fitting three angular distributions $\phi, \theta_\ell, \theta_K$ \rightarrow Wilson coefficients (see EFT later)
$B^0 \rightarrow K^*\mu\mu$ -- calibration

- Acceptance functions for the angular variables determined from MC simulation
- Signal mass resolution calibrated from $B \rightarrow K^*J/\psi$ and $K^*\psi(2S)$ “standard candle” samples
- Simultaneous fit to B candidate mass and angular distributions
 - background angular distributions described by polynomials
 - folding in angular variables permits fitting only a subset of coefficients

JHEP 10 (2018) 047
$B^0 \rightarrow K^*\mu\mu$ – ATLAS results

- Particular interest in P'_5, especially bin $q^2 \in [4, 6]$ GeV2
 - LHCb observed a $>2\sigma$ deviation [PRL 125 (2020) 011802]
- Can see e.g. lack of expected $\cos \phi$ modulation in signal fit: $P'_5 \approx 0$ in our fit for this bin
 - simultaneous fit to θ_K and θ_L as well
 - not significant difference from predictions

JHEP 10 (2018) 047
$B^0 \to K^*\mu\mu$ – ATLAS results

- Particular interest in P'_5, especially bin $q^2 \in [4, 6] \text{ GeV}^2$
 - LHCb observed a $>2\sigma$ deviation [PRL 125 (2020) 011802]
- Can see e.g. lack of expected $\cos\phi$ modulation in signal fit: $P'_5 \approx 0$ in our fit for this bin
 - simultaneous fit to θ_K and θ_L as well
 - not significant difference from predictions
 - deviation in the same direction as other results

- Results for other coefficients: P_1, P'_4, P'_6, P'_8
- Compatible within 3σ with SM
$B^0 \rightarrow K^*\mu\mu$ – CMS results and summary

- Similar analysis from CMS measures P_1 and P'_{5}
 - limited statistics ⇒ only few parameters extracted
- Measurements are in agreement with predictions based on the standard model

Graphs and Data

- $R = \frac{\sigma(B^0 \rightarrow K^*\mu\mu)}{\sigma(B^0 \rightarrow \pi^0\mu\mu)}$
- q^2 (GeV^2)

- **LHCb**: JHEP 02 (2016) 104
- **Belle**: PRL 118 (2017) 111801
- **ATLAS**: JHEP 10 (2018) 047
- **SM-DHMV**: JHEP 06 (2016) 092
- **SM-HEPfit**: PLB 442 (1998) 381
- **SM-HEPfit**: PRD 61 (2000) 074024
- **SM-HEPfit**: PRD 62 (2000) 094023

Other $B \to K\mu\mu$ analyses

- A_{FB}: muon forward-backward asymmetry
- F_H: contribution from pseudoscalar, scalar and tensor amplitudes to the decay width

$B^+ \to K^+\mu^+\mu^-$

- F_L: K^{*+} longitudinal polarization fraction

$B^+ \to K^*(892)\mu^+\mu^-$

Results consistent with previous measurements, and compatible with SM predictions

JHEP04(2021)124
Future developments & prospects

- Lepton flavour universality variables require trigger on electrons and single muons
 → CMS B-parking [CMS-DP-2019/043]
 - dynamically adjust trigger p_T thresholds during fill to keep high rate despite falling luminosity within fill

- HL-LHC: Precision in measuring the P'_5 parameter is expected to improve by a factor of $O(10)$
 - depends on muon trigger options
 - precision improvement in other observables: F_L, $P_i^{(r)}$
 - with 3000 fb$^{-1}$, finer binning in q^2 is possible

Previously presented results obtained with ~ 20 fb$^{-1}$ @ 8 TeV
Deviation from SM \Rightarrow New Physics?

- High-p_T searches \rightarrow heavy new particles at tree-level
 - respect full SM gauge symmetry
 - leptoquarks and heavy resonances (W', Z')
 - previous talk by Gianantonio Pezzullo
- Contact interactions \rightarrow fit to data at scale $g^2/\Lambda^2 \sim (30 \text{ GeV})^{-2}$
 - Tuesday talk by Yoav Afik
- Focus on low-p_T \rightarrow NP in loop effects
 - EFT fit to $b \rightarrow s\ell\ell$ data
Effective field theory

- An EFT probes different couplings
 \[\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i \]
 - fermion operators \(O_i \), Wilson coefficients \(C_i \)
- Important Wilson coefficients (for SM and NP)
 - \(C_9^\mu \) – vector current, dominant contributions to angular observables, LFU observables
 - \(C_{10}^\mu \) – axial current, dominant contributions to \(B_s \to \mu\mu \), LFU observables
- Global fits indicate consistent deviation: reduction of \(C_9 \) for muons

EFT fit to $b \to s\ell\ell$ data – R_K and P'_5

- R_K and P'_5 important in indicating favoured scenarios
- Most favoured 1D scenario \rightarrow vector coupling to μ
 - encoded in $C_{9\mu}^{\text{NP}}$
 - preferred over SM with $\text{Pull}_{\text{SM}} 7\sigma$ fitting all $b \to s\mu\mu$ observables
- $C_{9\mu}^V = -C_{10\mu}^V, C_9^U$
 - C_9^U encodes the presence of a lepton-flavour universal NP component to C_9, i.e., $b \to see, b \to s\mu\mu$ and $b \to s\tau\tau$
 - $b \to s\mu\mu$ LFUV NP contribution to (C_9, C_{10})
- $C_{9\mu}^{\text{NP}}, C_{9\mu}' = -C_{10\mu}'$
 - pattern with right-handed couplings to muons
 - large negative NP contribution to $C_{9\mu}$

More fits by other groups:

- Alok et al., [JHEP 06 (2019) 089](https://link.springer.com/article/10.1007%2FJHEP06%282019%29089)
- Datta et al., [PLB 797 (2019) 134858](https://linkinghub.elsevier.com/retrieve/pii/S0370269319304385)
- D’Amico et al., [JHEP 09 (2017) 010](https://link.springer.com/article/10.1007%2FJHEP09%282017%29010)
EFT fit to $b \rightarrow s \ell \ell$ data – $B_{s,d} \rightarrow \mu^+ \mu^-$

- Absolute branching ratio of the purely leptonic decay $B_s \rightarrow \mu \mu$ is considered as theoretically clean
- All measurements statistically limited
- $\text{BR}(B_s \rightarrow \mu \mu)$ plays an important role in constraining the Wilson coefficient C_{10}
- If all rare B decays are considered, best fit of $(C_9^U, C_9^\mu) \simeq (-0.32, -0.34)$ with a pull 5.4σ
- Overall, good agreement between fits of different groups despite different approaches \rightarrow robust $b \rightarrow s \ell \ell$ global analyses
Loop-level solutions to B-anomalies

- Addition of **supersymmetric** fields brings new penguin and box diagrams in the $b \to s \ell \ell$ picture
 - mass insertion approximation may be required for consistency with B-anomalies
 - if $m(\Psi) < m(\Phi_{q,\ell})$, then Ψ can be a EW gaugino: chargino $\tilde{\chi}^\pm$, neutralino $\tilde{\chi}^0$
 - if Ψ is the lightest neutralino, $\tilde{\chi}_1^0$, then it can be a dark-matter candidate
 - Φ_{ℓ} can be the smuon, $\tilde{\mu}$ or the sneutrino, $\tilde{\nu}_\mu$

- Collider searches have set bounds in various of the involved sparticles
- Have these SUSY scenarios been ruled out by LHC?
- Can $(g-2)_\mu$ be accommodated, too?

Flavour anomalies 2021

Hints of New Physics

- $B_s \rightarrow \phi \mu^+ \mu^-$, $\sim 3.5\sigma$
- $B \rightarrow K^* \mu^+ \mu^-$, angular distribution, $\sim 3\sigma$
- $|V_{ub}|, |V_{cb}|$, inclusive vs. exclusive, $\sim 3\sigma$
- Like-sign dimuon charge asymmetry, $\sim 3.5\sigma$
- K decays: ϵ'/ϵ, $\sim 2.5\sigma$

$(g-2)_\mu$ tension with SM first observed in BNL, confirmed by Muon $g-2$ @ Fermilab (that is if theory end is confirmed)

Flavour anomalies 2021

Hints of New Physics

\[B_s \to \phi \mu^+ \mu^- \sim 3.5\sigma \]

\[B \to K^{*} \mu^+ \mu^- \text{ angular distribution} \sim 3\sigma \]

\[|V_{ub}|, |V_{cb}| \text{ inclusive vs. exclusive} \sim 3\sigma \]

\[K \text{ decays: } \epsilon'/\epsilon \sim 2.5\sigma \]

\[B \to K \mu^+ \mu^- \]
\[B \to K e^+ e^- \sim 2.5\sigma \]

Is it possible to find a common solution for B-anomalies and \((g - 2)_\mu\) measurement?

Muon g-2, Phys. Rev. Lett. 126 (2021) 141801
Supersymmetry: smuons & \((g-2)_\mu \)

- ATLAS & CMS have looked for and constrained the existence of sleptons in various channels.
- Yet there is parameter space left still compatible with the observed value of \((g-2)_\mu \).
- These scenarios may also respect the \(b \to s\ell\ell \) anomalies.

2\&0J analysis

\((g-2)_\mu \)-relevant SUSY parameters
- \(M_2 \): wino mass parameter
- \(\mu \): higgsino mass parameter
- \(\tan \beta \): ratio of vev’s of two Higgs doublets

Compressed spectra

\[m(\tilde{\mu}) \approx m(\tilde{\chi}^0_1) \]
Summary & prospects

• Rare $b \rightarrow s\mu\mu$ decays are sensitive probe of new physics
 ▫ global fits show a consistent set of anomalies across observables and experiments
 ▫ ATLAS & CMS are performing angular-distribution analyses

• Interesting NP scenarios enter in loop diagrams
 ▫ also in connection with $(g-2)_\mu$ tension ☞ supersymmetry

• ATLAS & CMS are adding capabilities to measure LFU observables
 ▫ $R(K^*)$, $R(K) \leftrightarrow$ electron channel
 ▫ $R(D)$, $R(D^*) \leftrightarrow$ single-muon channel, taus?

• HL-LHC will bring a $\sim\times10$ better precision in F_L, P_i parameters

• CMS & ATLAS are exploring more and more B-physics observables
Thank you for your attention!
Spares
Large Hadron Collider at CERN

- Run 1: 2010 – 2012
 - proton-proton $\sqrt{s} = 7$ – 8 TeV
- Run 2: 2015 – 2018
 - proton-proton $\sqrt{s} = 13$ TeV
- Spectacular LHC performance!